发明领域 本发明一般涉及修饰基因表达的方法,并涉及修饰转基因生物体,尤其是转基因动物或植物之细胞,组织或器官中的内源性基因表达的合成基因。更特别的是,本发明利用重组DNA技术对细胞,组织,器官或整个生物体中的靶基因的表达进行转录后修饰或调制,籍此产生新的表型。本发明还提供了新的合成基因和基因构建体,当导入生物体中时,它们能阻抑,延迟或要不然降低生物体中的内源性基因或靶基因的表达。 概述 说明书的最后列出了本说明书中所提到的参考文献的详细目录。 本文所用术语“得自”指的是特定的整体可得自特定的来源或物种,但是不必直接得自特定的来源或物种。 除非本文另有解释,说明书中出现的“包含”,“包括”或“含有”指的是包含所提及的一个或多个步骤或元件或整体,但不排除其它任何一个或多个步骤或元件或整体。 本领域技术人员应理解:本文所述的发明不是那些具体描述的内容,它允许变化和修饰。应理解本发明包括所有这种变化和修饰。本发明也包括说明书中单独或共同提及或指出的所有步骤,特征,组合物和化合物,和任何两个或多个所述步骤或特征的任何和所有组合。 本发明并不局限于本文所述的旨在阐明本发明的具体实施方案所限定的范围,显然,正如本文所述,功能等同的产物,组合物和方法也在本发明的范围之内。 说明书中包括的含有核苷酸和氨基酸序列资料的序列鉴定号(SEQID NO:)汇总于说明书之后,使用PatentIn 2.0版程序可以制备序列号。在序列表中,由数字标识符<210>接着序列鉴别符(如<210>1,<210>2等)标明各个核苷酸或氨基酸序列。各个核苷酸或氨基酸序列的长度,序列类型(DNA,蛋白质(PRT)等)和来源生物体分别由数字标识域<211>,<212>和<213>提供的资料表示。说明书中提及的核苷酸和氨基酸序列由数字标识域<400>后接着序列鉴别符(如<400>1,<400>2等)所提供的资料限定。 本文提及的核苷酸残基的名称由IUPAC-IUB生物化学命名委员会推荐,其中A表示腺嘌呤,C表示胞嘧啶,G表示鸟嘌呤,T表示胸腺嘧啶,Y表示嘧啶残基,R表示嘌呤残基,M表示腺嘌呤或胞嘧啶,K表示鸟嘌呤或胸腺嘧啶,S表示鸟嘌呤或胞嘧啶,W表示腺嘌呤或胸腺嘧啶,H表示除鸟嘌呤以外的核苷酸,B表示除腺嘌呤以外的核苷酸,V表示除胸腺嘧啶以外的核苷酸,D表示除胞嘧啶以外的核苷酸,N表示任何核苷酸残基。 本文提及的氨基酸残基的名称由IUPAC-IUB生物化学命名委员会推荐,并列于下表1。 表1 发明背景 为了在真核生物体内产生新的性状或将新的性状导入所述生物体的特定细胞,组织或器官,必需控制所述生物体的代谢途径。尽管重组DNA技术在阐明真核基因表达的调控机制方面取得了显著进步,但在目的为产生新性状的基因表达实际操作方面却收效甚微。另外,有关人为干预以调制真核基因表达水平,人们能利用的方法非常有限。 阻抑,延迟或要不然降低基因表达的一个方法利用了由核基因互补链转录的能被正常转录并能被翻译成多肽的mRNA分子。尽管尚不清楚该方法所涉及的确切机制,但已假设双链mRNA可通过互补核苷酸序列之间的碱基配对形成,从而产生以低效率被翻译和/或在被翻译之前即已被细胞内的核糖核酸酶降解的复合物。 或者,当在细胞中导入一个或多个拷贝的所述基因或一个或多个拷贝的基本上类似的基因时,可抑制细胞,组织或器官中的内源性基因表达。尽管该现象所涉及的机制尚不清楚,但该机制似乎涉及机械性的异源加工。例如,已假设该方法涉及转录阻抑,此时会形成可由体细胞-遗传的染色质受阻抑状态,或者涉及转录后沉默,其中转录起始正常发生但随后消除了共-抑制基因的RNA产物。 靶向特定基因表达的这两种方法的效率很低,通常得到高度可变的结果。使用基因的不同区域,例如5’-非翻译区域,3’-非翻译区域,编码区域或内含子序列靶向基因表达会得到不一致的结果。因此,至于可为使用现有技术阻抑,延迟或要不然降低基因表达提供最有效工具的基因序列的特性,目前还不存在共有区。另外,代与代之间存在的高水平变异使得人们不可能预测基因表达被显著修饰的生物体的后代的特定基因的阻抑水平。 最近,Dorer和Henikoff(1994)阐明了果蝇基因组中的串联重复基因拷贝的沉默和Polycomb基因(即Pc-G系统;Pal-Bhadra等,1997)对分散的果蝇Adh基因的转录阻抑。然而,这种串联重复基因拷贝的沉默对通过重组方式操纵动物细胞之基因表达的尝试没什么用处,其中能靶向特定基因表达的序列被导入基因组中的分散位置,该方法未能与基因-靶向技术联合。尽管理论上是可行的,但根据分离中所用的基因靶向方法的低效性,预期这种联合的工作效率较低,该联合还需要复杂的载体系统。另外,转录阻抑的使用(如果蝇Pc-G系统)似乎还需要懂得一些能调制任何特定靶基因表达的调节机制,因此,难以将其作为阻抑,延迟或降低动物细胞基因表达的一般技术应用于实际操作。 对这些现象所涉及的机制知之甚少意味着调制基因表达水平的技术,尤其是使用重组DNA技术阻抑,延迟或要不然降低特定基因表达的技术进展甚微。另外,这些方法的不可预测性导致目前还没有在商业上可行的用于调制真核或原核生物之特定基因表达水平的手段。 因此,需要调制基因表达的改良方法,尤其是阻抑,延迟或要不然降低动物细胞基因表达的改良方法以在动物细胞中导入新的表型性状。具体地说,这些方法应提供表型修饰的一般手段而不必同时进行基因靶向法。 发明简述 本发明部分基于发明人令人惊奇的发现:从含有与启动子可操作相连的核酸分子的转化细胞中可产生和选择表现出一个或多个所需性状的细胞,其中核酸分子的转录产物含有与内源性或非内源性靶基因转录物的核苷酸序列基本上相同的核苷酸序列,所述靶基因的表达欲被调制。转化细胞可再生为能表现出新性状,尤其是病毒抗性和内源性基因的修饰表达的完整的组织,器官或生物体。 因此,本发明一方面提供了调制动物细胞,组织或器官中的靶基因表达的方法,所述方法至少包括在足以翻译欲被修饰的所述靶基因的mRNA产物的条件下,将一个或多个分散的核酸分子或外源核酸分子导入所述细胞,组织或器官达一段时间的步骤,所述核酸分子含有多拷贝与所述靶基因的核苷酸序列或其区域基本上相同的或与其互补的核苷酸序列,该方法的前提条件是所述mRNA产物的转录不能全部受到阻抑或降低。 在特别优选的实施方案中,分散的核酸分子或外源核酸分子含有的核苷酸序列编码多拷贝与靶基因之mRNA产物的核苷酸序列基本上相同的mRNA分子。更优选多拷贝的靶分子是串联同向重复序列。 在更优选的实施方案中,分散的核酸分子或外源核酸分子为可表达的形式以使其至少能被转录以产生mRNA。 靶基因可以是对动物细胞而言为内源性的基因,或者是外源基因,如病毒或外源基因序列等。优选靶基因为病毒基因序列。 本发明对调制真核基因表达,尤其是调制人或动物的基因表达,甚至更特别地调制脊椎动物和无脊椎动物,如昆虫,水生动物(如鱼,水生贝壳类动物,软体动物,甲壳类动物,如蟹,龙虾和对虾,鸟类动物和哺乳动物等)的基因表达特别有用。 用适当方法和足够数目的转化细胞可选择多种性状。所述性状包括但不限于可见的性状,疾病抗性性状和病原体抗性性状。调制作用可应用于在植物和动物中表达的多种基因,包括例如负责细胞代谢或细胞转化的内源性基因,包括癌基因,转录因子和其它编码参与细胞代谢之多肽的基因。 例如,通过靶向其中的酪氨酸酶基因的表达可导致小鼠色素的产生发生变化,从而为黑色小鼠提供了新的白化病表型。通过靶向植物细胞或动物细胞中的病毒复制所需的基因,可将含有多拷贝编码病毒复制酶,聚合酶,外被蛋白或非包被基因或蛋白酶蛋白的核苷酸序列的基因构建体导入表达上述蛋白质的细胞中以赋予细胞抗病毒的免疫力。 在本发明的实施过程中,分散的核酸分子或外源核酸分子一般含有与靶基因序列有大于约85%的同一性的核苷酸序列,然而,较高的同源性能对靶基因序列的表达产生更有效的调制作用。优选实质上更高的同源性,或大于约90%的同源性,甚至更优选约95%至绝对同一性。 相对于靶基因的初级转录产物或经全面加工的mRNA而言,导入的分散的核酸分子或外源核酸分子序列无需为绝对同源,也无需为全长。短于全长的序列中较高的同源性可补偿较长但同源性较低的序列。另外,导入的序列无需具有相同的内含子或外显子模式,非编码区段的同源性同样有效。根据靶基因的大小,一般应使用大于20-100个核苷酸的序列,但优选使用大于约200-300个核苷酸的序列,特别优选大于500-1000个核苷酸的序列。 本发明的第二方面提供了合成基因,该基因可修饰被其转染或转化的原核或真核生物之细胞,组织或器官中的靶基因表达,其中所述合成基因至少含有分散的核酸分子或外源核酸分子,所述核酸分子含有多拷贝与所述靶基因或其衍生物的核苷酸序列或其互补序列基本上相同的核苷酸序列,并被可操作地置于在所述细胞,组织或器官中可操作的启动子序列的控制之下。 本发明的第三方面提供了合成基因,该基因可修饰被其转染或转化的原核或真核生物之细胞,组织或器官中的靶基因表达,其中所述合成基因至少含有多结构基因序列,其中各个结构基因序列含有与所述靶基因或其衍生物的核苷酸序列或其互补序列基本上相同的核苷酸序列,其中所述多结构基因序列被可操作地置于在所述细胞,组织或器官中可操作的单个启动子序列的控制之下。 本发明的第四方面提供了合成基因,该基因可修饰被其转染或转化的原核或真核生物之细胞,组织或器官中的靶基因表达,其中所述合成基因至少含有多结构基因序列,其中所述结构基因序列被可操作地置于在所述细胞,组织或器官中可操作的单个启动子序列的控制之下,其中各个所述结构基因序列含有与所述靶基因或其衍生物的核苷酸序列或其互补序列基本上相同的核苷酸序列。 本发明的第五方面提供了基因构建体,该构建体可修饰被转染或转化的细胞,组织或器官中的内源性基因或靶基因的表达,其中所述基因构建体至少含有本发明的合成基因和一个或多个复制起点和/或可选择的标记基因序列。 为了观察多细胞生物体,如植物和动物中的很多新性状,尤其是那些组织特异性或器官特异性或受发育-调节的性状,需要将携有本文所述的合成基因和基因构建体的转化细胞再生为完整的生物体。本领域技术人员应理解这意味着由一个转化的植物细胞或动物细胞,一组这样的细胞,一个组织或器官长成完整的生物体。由分离的细胞和组织再生某种植物和动物的标准方法是本领域技术人员已知的。 因此,本发明的第六方面提供了含有本文所述的合成基因和基因构建体的细胞,组织,器官或生物体。 附图简述 图1图示了质粒pEGFP-N1MCS。 图2图示了质粒pCMV.cass。 图3图示了质粒pCMV.SV40L.cass。 图4图示了质粒pCMV.SV40LR.cass。 图5图示了质粒pCR.Bgl-GFP-Bam。 图6图示了质粒pBSII(SK+).EGFP。 图7图示了质粒pCMV.EGFP。 图8图示了质粒pCR.SV40L。 图9图示了质粒pCR.BEV.1。 图10图示了质粒pCR.BEV.2。 图11图示了质粒pCR.BEV.3。 图12图示了质粒pCMV.EGFP.BEV2。 图13图示了质粒pCMV.BEV.2。 图14图示了质粒pCMV.BEV.3。 图15图示了质粒pCMV.VEB。 图16图示了质粒pCMV.BEV.GFP。 图17图示了质粒pCMV.BEV.SV40L-0。 图18图示了质粒pCMV.0.SV40L.BEV。 图19图示了质粒pCMV.0.SV40L.VEB。 图20图示了质粒pCMV.BEVx2。 图21图示了质粒pCMV.BEVx3。 图22图示了质粒pCMV.BEVx4。 图23图示了质粒pCMV.BEV.SV40L.BEV。 图24图示了质粒pCMV.BEV.SV40L.VEB。 图25图示了质粒pCMV.BEV.GFP.VEB。 图26图示了质粒pCMV.EGFP.BEV2.PFG。 图27图示了质粒pCMV.BEV.SV40LR。 图28图示了质粒pCDNA3.Galt。 图29图示了质粒pCMV.Galt。 图30图示了质粒pCMV.EGFP.Galt。 图31图示了质粒pCMV.Galt.GFP。 图32图示了质粒pCMV.Galt.SV40L.0。 图33图示了质粒pCMV.Galt.SV40L.tlaG。 图34图示了质粒pCMV.0.SV40L.Galt。 图35图示了质粒pCMV.Galtx2。 图36图示了质粒pCMV.Galtx4。 图37图示了质粒pCMV.Galt.SV40L.Galt。 图38图示了质粒pCMV.Galt.SV40L.tlaG。 图39图示了质粒pCMV.Galt.GFP.tlaG。 图40图示了质粒pCMV.EGFP.Galt.PFG。 图41图示了质粒pCMV.Galt.SV40LR。 图42图示了质粒pART7。 图43图示了质粒pART7.35S.SCBV.cass。 图44图示了质粒pBC.PVY。 图45图示了质粒pSP72.PVY。 图46图示了质粒pClapBC.PVY。 图47图示了质粒pBC.PVYx2。 图48图示了质粒pSP72.PVYx2。 图49图示了质粒pBC.PVYx3。 图50图示了质粒pBC.PVYx4。 图51图示了质粒pBC.PVY.LNYV。 图52图示了质粒pBC.PVY.LNYV.PVY。 图53图示了质粒pBC.PVY.LNYV.YVPΔ。 图54图示了质粒pBC.PVY.LNYV.YVP。 图55图示了质粒pART27.PVY。 图56图示了质粒pART27.35S.PVY.SCBV.0。 图57图示了质粒pART27.35S.0.SCBV.PVY。 图58图示了质粒pART27.35S.0.SCBV.YVP。 图59图示了质粒pART7.PVYx2。 图60图示了质粒pART7.PVYx3。 图61图示了质粒pART7.PVYx4。 图62图示了质粒pART7.PVY.LNYV.PVY。 图63图示了质粒pART7.PVY.LNYV.YVPΔ。 图64图示了质粒pART7.PVY.LNYV.YVP。 图65图示了质粒pART7.35S.PVY.SCBV.YVP。 图66图示了质粒pART7.35S.PVYx3.SCBV.YVPx3。 图67图示了质粒pART7.PVYx3.LNYV.YVPx3。 图68图示了质粒pART7.PVYMULT1。 发明详述 本发明提供了调制细胞,组织或器官中的靶基因表达的方法,所述方法至少包括在足以翻译欲被修饰的所述靶基因的mRNA产物的条件下,将一个或多个分散的核酸分子或外源核酸分子导入所述细胞,组织或器官达一段时间的步骤,所述核酸分子含有多拷贝与所述靶基因的核苷酸序列或其区域基本上相同或与其互补的核苷酸序列,该方法的前提条件是所述mRNA产物的转录不能全部受抑或降低。 “多拷贝”指的是两个或多个拷贝的靶基因以相同或不同的定向在物理位置上紧密相连或并列地存在于相同的核酸分子上,任选通过填充片段或基因间隔区将它们分开以便于必要时在各个重复序列之间形成二级结构。填充片段可含有能与核酸分子共价连接的核苷酸或氨基酸残基,碳水化合物分子或寡糖分子或碳原子或其同系物,类似物或衍生物的任何组合。 在优选的实施方案中,填充片段含有核苷酸序列或其同系物,类似物或衍生物。 更优选填充片段含有长度至少约为10-50个核苷酸的核苷酸序列,甚至更优选长度至少约为50-100个核苷酸的序列,更优选长度至少约为100-500个核苷酸的序列。 当分散的或外源的核酸分子含有内含子/外显子剪接连接序列时,填充片段可用作内含子序列,其位于更靠近基因5’末端的结构基因3’-剪接位点和结构基因下一个下游单位的5’-剪接位点之间。或者,当分散的外源核酸分子的两个以上的邻近核苷酸序列单位需要被翻译时,位于它们之间的填充片段不应包括框内翻译终止密码子,在填充片段的两个末端都缺乏内含子/外显子剪接连接序列或者在各个单位的5’末端添加翻译起始密码子,这一点对于本领域技术人员而言是显而易见的。 优选填充片段编码可测的标记蛋白质或其生物活性类似物和衍生物,例如荧光素酶,β-半乳糖醛酸酶,β-半乳糖苷酶,氯霉素乙酰转移酶或绿色荧光蛋白等。也可以使用其它填充片段。 根据此实施方案,可测的标记或其类似物或衍生物可利用其赋予特殊的可测表型,优选为肉眼可测的表型的能力来显示本发明的合成基因在细胞,组织或器官中的表达。 本文所用术语“调制”指的是:与不使用本文所述的发明方法时所述基因的表达相比,靶基因的表达有一定幅度的降低和/或基因表达的时序被延迟和/或靶基因表达的发育或组织特异性或细胞特异性模式被改变。 尽管不限制本文所述发明的范围,但本发明涉及调制基因表达,其包括以一定幅度阻抑,延迟或降低真核生物之特定细胞,组织或器官中的靶基因表达,所述真核生物具体包括植物,如单子叶植物或双子叶植物,或人或其它动物,甚至更特别地包括脊椎动物和无脊椎动物,如昆虫,水生动物(如鱼,水生贝壳类动物,软体动物,甲壳类动物,如蟹,龙虾和对虾,鸟类动物和哺乳动物等)。 更优选通过在细胞,组织或器官中导入分散的核酸分子或外源核酸分子使靶基因的表达完全失活。 尽管不受任何理论或行为模式的束缚,但是,由实施本发明所致的靶基因表达的降低或消除可归因于靶基因之mRNA转录产物的翻译被减少或延迟,或者是由于靶基因的mRNA转录物被内源性宿主细胞系统序列-特异性地降解,使得所述mRNA不能被翻译。 为了取得最佳结果,特别优选在靶基因之mRNA转录物被正常翻译的时刻或阶段之前,或者在靶基因之mRNA转录物被正常翻译的同时发生靶基因之mRNA转录物的序列-特异性降解。因此,为了最好地实施本发明,应注重考虑选择适当的启动子序列来调节导入的分散的核酸分子或外源核酸分子的表达。为此,特别优选使用强的组成型启动子或诱导型启动子系统来调节导入的分散的核酸分子或外源核酸分子的表达。 本发明清楚地包括降低的表达,其中靶基因表达的降低是由降低转录实现的,前提条件是转录的降低不是其发生的唯一机制,所述的转录降低至少伴随着稳态mRNA库翻译的降低。 靶基因可以是对动物细胞而言为内源性的基因序列,或者是非内源性基因序列,如得自病毒或其它外源病原体生物并能进入细胞并在感染后使用细胞机器的基因序列。 当靶基因对动物细胞而言为非内源性基因序列时,需要靶基因编码对病毒或其它病原体的复制或再生至关重要的功能。在此实施方案中,本发明对预防和治疗动物细胞的病毒感染或赋予或刺激针对所述病原体的抗性特别有用。 优选靶基因含有植物或动物细胞,组织或器官之病毒病原体的一个或多个核苷酸序列。 例如,对动物和人而言,病毒病原体可以是逆转录病毒,如慢病毒(如免疫缺损病毒),单链(+)RNA病毒,如牛肠道病毒(BEV)或Sinbisα病毒。或者,靶基因可含有动物细胞,组织或器官之病毒病原体的一个或多个核苷酸序列,例如但不限于双链DNA病毒,如牛疱疹病毒或单纯疱疹病毒I(HSV I)等。 对植物而言,病毒病原体优选为马铃薯Y病毒组,花椰菜花叶病毒组,badnavirus,双粒病毒组,呼肠孤病毒,弹状病毒,布尼亚病毒,tospovirus,细病毒组,番茄丛矮病毒组,黄矮病毒组,南方菜豆花叶病毒组,雀麦草花叶病毒组,南瓜花叶病毒组,等轴不稳定环斑病毒组,苜蓿花叶病毒,烟草花叶病毒,烟草脆裂病毒组,马铃薯x病毒组和线形病毒组,例如但不限于CaMV,SCSV,PVX,PVY,PLRV和TMV等。 至于病毒病原体,本领域技术人员应懂得:病毒编码的功能可由宿主细胞编码的多肽反式补偿。例如,能补偿失活的病毒DNA聚合酶基因的宿主细胞DNA聚合酶有利于牛疱疹病毒基因组在宿主细胞中复制。 因此,当靶基因对动物细胞而言为非内源性基因序列时,本发明的另一个实施方案提供了编码不能被宿主细胞功能补偿的病毒或外源多肽的靶基因,例如病毒-特异性的基因序列。根据本发明此实施方案的靶基因例子包括但不限于编码病毒外被蛋白,非包被蛋白和依赖于RNA的DNA聚合酶和依赖于RNA的RNA聚合酶等的基因。 在本发明特别优选的实施方案中,靶基因是依赖于BEV RNA的RNA聚合酶基因或其同系物,类似物或衍生物或是编码PVY Nia蛋白酶的序列。 其中的靶基因表达被修饰的细胞可以是得自多细胞植物或动物的任何细胞,包括其细胞和组织培养物。优选动物细胞得自昆虫,爬行动物,两栖动物,鸟类,人或其它哺乳动物。动物细胞的例子包括胚干细胞,经培养的皮肤成纤维细胞,神经元细胞,体细胞,造血干细胞,T细胞和无限增殖化的细胞系,如COS,VERO,HeLa,小鼠C127,中国仓鼠卵巢(CHO)细胞系,WI-38,幼仓鼠肾(BHK)或MDBK细胞系等。本领域技术人员容易得到上述细胞和细胞系。因此,其中的靶基因表达被修饰的组织或器官可以是含有这种动物细胞的任何组织或器官。 优选植物细胞得自单子叶或双子叶植物的种以及由其衍生的细胞系。 本文所用术语“分散的核酸分子”指的是含有一个或多个拷贝的,优选为串联同向重复的核苷酸序列的核酸分子,所述核苷酸序列与源自导入所述核酸分子的细胞,组织或器官的基因的核苷酸序列基本上相同,其中所述核酸分子是非内源性的,也就是说当经由重组方法将该核酸分子导入动物细胞,组织或器官时,它一般以染色体外的核酸或者以与所述基因不相连的整合的染色体核酸形式存在。更特别地,“分散的核酸分子”包括与靶基因不相连的染色体核酸或染色体外核酸,由于其未串联连接或占据相同染色体上的不同染色体位置或位于不同染色体上或以附加体,质粒,粘粒或病毒颗粒的形式存在于细胞中,在物理图谱中是针对靶基因的。 “外源核酸分子”指的是分离的核酸分子,其具有一个或多个拷贝的,优选为串联同向重复的核苷酸序列,所述核苷酸序列源自与导入所述外源核酸分子的生物体不同的生物体的基因序列。这一定义包括源自与导入所述核酸分子的分类群相同之最低分类群(即相同种群)的不同个体的核酸分子,以及源自与导入所述核酸分子的分类群不同之分类群的不同个体的核酸分子,例如得自病毒病原体的基因。 因此,实施本发明时外源核酸分子所作用的靶基因可以是使用转化或渐渗技术从一个生物体导入另一个生物体的核酸分子。根据本发明此实施方案的靶基因例子包括得自水母Aequoria victoria的编码绿色荧光蛋白的基因(Prasher等,1992;国际专利公开号WO95/07463),酪氨酸酶基因尤其是鼠酪氨酸酶基因(Kwon等,1988),能编码lacZ基因的多肽阻抑物的大肠杆菌lacI基因,本文例举的猪α-1,3-半乳糖基转移酶基因(NCBI登记号L36535)和本文例举的PVY和BEV结构基因或所述基因的同系物,类似物或衍生物或其互补的核苷酸序列。 本发明通过使用分散的核酸分子或外源核酸分子还可同时靶向在特定细胞中共表达的几个靶基因的表达,所述核酸分子含有与共表达的各个靶基因基本上相同的核苷酸序列。 “基本上相同”指的是所导入的本发明的分散或外源核酸分子和靶基因序列在核苷酸序列水平上有足够的同一性以使两者之间能在标准的细胞内条件下进行碱基配对。 本发明分散的或外源核酸分子中各个重复的核苷酸序列与靶基因序列的部分核苷酸序列在核苷酸序列水平上至少约80-85%相同,更优选至少约85-90%相同,甚至更优选至少约90-95%相同,甚至更优选在核苷酸序列水平上至少约95-99%或100%相同。 尽管本发明不受本发明分散的核酸分子或外源核酸分子中重复序列的精确数目的限制,但应理解本发明需要至少2拷贝靶基因序列在细胞中表达。 优选多拷贝的靶基因序列以串联反向重复序列和/或串联同向重复序列的形式存在于分散的核酸分子或外源核酸分子中。这种构型的例子为本文所述的含有Galt,BEV或PVY基因区域的“试验质粒”。 导入细胞,组织或器官中的分散的或外源核酸分子优选含有RNA或DNA。 优选分散的或外源核酸分子还含有一个核苷酸序列,或与能编码由靶基因编码的氨基酸序列的核苷酸序列互补。甚至更优选核酸分子包括一个或多个ATG或AUG翻译起始密码子。 可使用标准方法将分散的核酸分子或外源核酸分子导入细胞,组织或器官以调制靶基因的表达。例如,核酸分子可以下列方式被导入:裸露的DNA或RNA,任选被包裹于脂质体中,位于减毒病毒的病毒颗粒中或与病毒外被或转运蛋白或惰性载体(如金)结合或为重组病毒载体或细菌载体或基因构建体等。 施用方式包括注射和口服(如包含在药用食品中食用)等。 本发明的核酸分子也可通过活的传递系统传递,如使用可掺入胃肠菌群的最适于在细菌中表达所述核酸分子的细菌表达系统。或者也可使用病毒表达系统。在此方面,一种病毒表达方式是通过喷雾,饲喂或水施用活的载体而将感染有效量的活载体(如病毒或细菌)提供给动物。病毒表达系统的另一种形式是能感染细胞但不能在其中复制的非复制病毒载体。非复制的病毒载体可将基因材料导入人或动物受试者以在其中进行瞬时表达。施用这种载体的模式与施用活病毒载体的模式相同。 将本发明的核酸分子传递给宿主细胞所用的载体,赋形剂和/或稀释剂应是人或兽用可接受的。这种载体,赋形剂和/或稀释剂是本领域技术人员众所周知的。适于兽用的载体和/或稀释剂包括任何和所有溶剂,分散介质,水溶液,涂层,抗细菌剂和抗真菌剂,等渗剂和吸收延迟剂等。除了与活性成分不相容的任何常规介质或试剂以外,可以将它们用于组合物中。在组合物中还可以加入其它活性成分。 在另一个实施方案中,本发明提供了调制细胞,组织或器官中的靶基因表达的方法,所述方法至少包括下列步骤: (i)选择一个或多个分散的核酸分子或外源核酸分子,所述核酸分子含有多拷贝与所述靶基因的核苷酸序列或其区域基本上相同的或与其互补的核苷酸序列;和 (ii)在足以翻译欲被修饰的所述靶基因的mRNA产物的条件下,将所述分散的核酸分子或外源核酸分子导入所述细胞,组织或器官达一段时间,前提条件是所述mRNA产物的转录不能全部受到阻抑或降低。 为了选择适当的核苷酸序列来靶向靶基因的表达,可以使用几种方法。在一个实施方案中,克隆了多拷贝与适当启动子可操作相连的被表征基因的特定区域,并检测其降低靶基因表达的效力。或者,可产生含有多拷贝基因序列的鸟枪文库,并检测其降低靶基因表达的效力。后一方法的相关优点是事先根本不用知道任何特定靶基因对决定细胞中不必要之表型的意义。例如,可使用含有病毒亚基因组片段的鸟枪文库,并直接检测其赋予动物宿主细胞抗病毒之免疫力的能力,而不必事先知道何种病毒基因对宿主细胞的病理起作用。 本文所用术语“鸟枪文库”是一套多样的核苷酸序列,其中所述套的各个成员优选包含在适于在细胞宿主中维持和/或复制的适当质粒,粘粒,噬菌体或病毒载体分子中。术语“鸟枪文库”包括表现文库,其中核苷酸序列之间的多样性程度大,使得衍生得到所述核苷酸序列的生物体基因组的所有序列都存在于“套”中,或者包括有限文库,其中所述序列之间的多样性程度较低。术语“鸟枪文库”还包括随机的核苷酸序列,其中核苷酸序列含有通过例如使用限制性内切核酸酶等其它方法剪切或部分消化基因组DNA得到的病毒或细胞基因组片段等。“鸟枪文库”还包括含有多样套之各个核苷酸序列的细胞,病毒颗粒和噬菌体颗粒。 根据本发明此实施方案的优选鸟枪文库是“表现文库”,其含有一套串联重复的核苷酸序列,所述序列得自植物或动物的病毒病原体。 在本发明特别优选的实施方案中,鸟枪文库包括含有多样套串联重复核苷酸序列的细胞,病毒颗粒和噬菌体颗粒,所述核苷酸序列编码多样套氨基酸序列,其中所述多样套核苷酸序列的成员被可操作地置于启动子序列的控制之下,所述启动子序列能介导所述串联重复核苷酸序列在细胞中表达。 因此,串联重复序列中各个单位的核苷酸序列可含有长度至少约为1-200的核苷酸。也可以使用较大的片段,尤其是可使用随机剪切的得自病毒,植物或动物基因组的核酸。 导入的核酸分子优选为可表达的形式。 “可表达的形式”指的是本发明的核酸分子以特定的排列方式存在,使得它至少在转录水平上可在细胞,组织,器官或完整生物体中表达(即它在动物细胞中表达,至少产生可任选翻译或翻译产生重组肽,寡肽或多肽分子的mRNA产物)。 例如,为了在所需的细胞,组织或器官中表达分散的核酸分子或外源核酸分子,产生了合成基因或含有所述合成基因的基因构建体,其中所述合成基因含有上文所述的核苷酸序列,所述序列与能调节其表达的启动子序列可操作相连。因此,本发明的核酸分子与一个或多个足以使真核转录发生的调控元件可操作相连。 因此,本发明的另一个实施方案提供了调制动物细胞,组织或器官中的靶基因表达的方法,所述方法至少包括下列步骤: (i)选择一个或多个分散的核酸分子或外源核酸分子,所述核酸分子含有多拷贝的,优选为串联重复的与所述靶基因的核苷酸序列或其区域基本上相同的或与其互补的核苷酸序列; (ii)产生含有所述分散的核酸分子或外源核酸分子的合成基因; (iii)将所述合成基因导入所述细胞,组织或器官;和 (iv)在足以翻译欲被修饰的所述靶基因的mRNA产物的条件下,将所述合成基因在所述细胞,组织或器官中表达一段时间,前提条件是所述mRNA产物的转录不能全部受到阻抑或降低。 本文提及的“基因”一词范围最宽,其包括: (i)经典的基因组基因,其由转录和/或翻译调节序列和/或编码区和/或非翻译序列(即内含子,5’和3’非翻译序列)组成;和/或 (ii)对应于基因的编码区(即外显子)和5’和3’非翻译序列的mRNA或cDNA;和/或 (iii)对应于编码区(即外显子),任选进一步包括非翻译序列和/或异源启动子序列的结构区,所述启动子序列由能赋予所述结构区表达特性的转录和/或翻译调节区组成。 术语“基因”也用于描述编码全部或部分功能产物,尤其是有义或反义mRNA产物或肽,寡肽或多肽或生物活性蛋白质的合成的或融合的分子。 术语“合成基因”指的是上文所述的非天然存在的基因,其优选包括至少一个或多个转录和/或翻译调节序列,所述序列与结构基因序列可操作相连。 术语“结构基因”指的是能被引导产生mRNA并任选编码肽,寡肽,多肽或生物活性蛋白质的核苷酸序列。本领域技术人员应懂得:不是所有mRNA都能被翻译成肽,寡肽,多肽或蛋白质,例如,如果mRNA缺乏功能性的翻译起始信号,或者如果mRNA是反义mRNA的话,就无法进行翻译。本发明明显包括合成基因,其含有不能编码肽,寡肽,多肽或生物活性蛋白质的核苷酸序列。尤其是,本发明人发现这种合成基因对修饰原核或真核生物之细胞,组织或器官中的靶基因表达可能很有利。 术语“结构基因区域”指的是合成基因的一部分,其含有本文所述的分散的核酸分子或外源核酸分子,所述分子在与其可操作相连的启动子序列的控制之下在细胞,组织或器官中进行表达。结构基因区域可含有一个或多个分散的核酸分子和/或外源核酸分子,所述分子可操作地受单个启动子序列或多个启动子序列的控制。因此,合成基因的结构基因区域可含有能编码氨基酸序列的核苷酸序列或与其互补。在此方面,用于实施本发明的结构基因区域可含有编码氨基酸序列但仍缺乏功能性翻译起始密码子和/或功能性翻译终止密码子,因而不含有完整开放阅读框的核苷酸序列。在本文中,术语“结构基因区域”也引申表示非编码的核苷酸序列,如基因的5’上游或3’下游序列,它们在表达所述基因的真核细胞中不能正常地被翻译。 因此,在本发明的上下文中,结构基因区域也包括相同或不同基因的两个或多个开放阅读框之间的融合。在此实施方案中,可使用本发明通过靶向其不同的非邻接区域来调制一个基因的表达,或者同时调制几个不同基因,包括多基因家族的不同基因的表达。在融合的核酸分子对动物细胞而言为非内源性的且特别地包括两个或多个得自病毒病原体的核苷酸序列的情况下,融合的核酸分子通过靶向所述几种病原体中的基因表达可同时赋予抗几种病原体的免疫力或保护作用。或者,或另外,融合的核酸分子通过靶向所述病原体的一个以上基因的表达可提供抗任何病原体的更有效的免疫力。 根据本发明的此方面,特别优选的结构基因区域包括至少一个可翻译的开放阅读框,更优选在所述开放阅读框的5’末端(尽管不必在所述结构基因区域的5’末端)还含有翻译起始密码子。在此方面,尽管结构基因区域可含有至少一个可翻译的开放阅读框和/或AUG或ATG翻译起始密码子,但上述序列的包括决不是暗示本发明需要翻译导入的核酸分子以调制靶基因的表达。尽管不受任何理论或行为模式的束缚,但是,本发明的核酸分子包含至少一个可翻译的开放阅读框和/或翻译起始密码子可增加其mRNA转录产物的稳定性,从而提高本发明的效率。 本发明的合成基因中能包括的结构基因序列的最佳数目可以有相当大的不同,这取决于各个所述结构基因序列的长度,方向和彼此之间的同一性程度。例如,本领域技术人员应懂得体内回文核苷酸序列的内在不稳定性,以及与构建含有反向重复核苷酸序列的长的合成基因相关的困难,它们都是由上述序列的体内重组趋势引起的。尽管存在上述困难,但本领域技术人员无需做过多的实验即可通过下列标准方法凭经验确定本发明的合成基因中能包括的结构基因序列的最佳数目,所述标准方法如使用重组酶-缺损的细胞系构建本发明的合成基因,将重复序列的数目降低至使重组事件消除或最小化的水平,或使多结构基因序列的总长度维持在可接受的限度,优选为长度不超过5至10kb,更优选不超过2至5kb,甚至更优选不超过0.5至2.0kb。 当结构基因区域含有一个以上分散的核酸分子或外源核酸分子时,本文中应将其称为“多结构基因区域”或类似术语。本发明显然还可使用多结构基因区域,该区域优选包含特定结构基因,分散的核酸分子或外源核酸分子或其片段的同向重复序列,反向重复序列或间断的回文序列。 本发明合成基因的多结构基因单位中所含的各个分散的或外源核酸分子含有与相同生物体中的不同靶基因基本上相同的核苷酸序列。当合成基因想通过修饰病毒靶基因的表达来提供抗细胞,组织或器官中的病原体,尤其是病毒病原体的保护作用时,上述方案特别有用。例如,多结构基因可含有与选自DNA聚合酶,RNA聚合酶,Nia蛋白酶和外被蛋白的两个或多个靶基因或其它对病毒感染性,复制或繁殖至关重要的靶基因基本上相同的核苷酸序列(即两个或多个分散的或外源核酸分子)。然而,关于此方案,优选选定的结构基因单位使得当本发明合成基因的多结构基因在启动子序列的控制之下表达时,与其基本上相同的靶基因能在大致相同的时间(或较晚的时间)在感染的细胞,组织或器官中正常表达。这意味着通常会选择控制多结构基因表达的启动子,使得当病毒靶基因在感染的不同阶段被表达时,在病毒的整个生命周期内都能在细胞,组织或器官中进行表达。 至于分散的或外源核酸分子的各个序列单位,多结构基因的各个单位可以以任何取向在空间上彼此相连,例如头对头,头对尾或尾对尾,所有构型都在本发明的范围之内。 为了在真核细胞中进行表达,除了本发明的核酸分子以外,合成基因一般还含有启动子并任选包括其它经设计便于分散的核酸分子或外源核酸分子表达的调节序列。 本文所指的“启动子”含义很广,它包括经典基因组基因的转录调节序列,如准确转录起始所需的含或不含CCAAT盒序列的TATA盒,和对发育和/或外部刺激物作出反应,或以组织特异性的方式改变基因表达的附加调节元件(即上游激活序列,增强子和沉默子)。启动子通常,但未必,位于所调节的结构基因区域的上游或5’。另外,含有启动子的调节元件通常位于距基因转录起始位点2kb之内。 本文所用术语“启动子”也可描述赋予,激活或增强核酸分子在细胞中的表达的合成的或融合的分子或衍生物。 优选的启动子还可含有多拷贝的一个或多个特异性调节元件以进一步增强有义分子的表达和/或改变所述有义分子的空间表达和/或时间表达。例如,可将赋予铜诱导性的调节元件置于与驱动有义分子表达的异源启动子序列相邻的位置,从而赋予所述分子的表达以铜诱导性。 将分散的或外源核酸分子置于启动子序列的调节控制之下意味着所述分子的定位使得表达受启动子序列的控制。启动子一般定位于它所控制的基因的5’(上游)。构建异源启动子/结构基因组合时,一般优选将启动子定位于距基因转录起始位点有一段距离的位置处,该距离与启动子和由其在天然环境中控制的基因,即衍生得到启动子的基因之间的距离大致相同。本领域技术人员都知道:该距离可以有些变化而不会丧失启动子功能。类似地,调节序列相对于受其控制的异源基因的优选定位由该元件在其天然环境(即衍生得到该元件的基因)中的定位确定。本领域技术人员都知道该距离也可以有些变化。 适用于本发明合成基因的启动子的例子包括得自病毒,真菌,动物和植物的启动子,所述启动子能在植物,动物,昆虫,真菌,酵母或细菌细胞中起作用。启动子在发生表达的细胞,组织或器官中,或在发生表达的发育阶段,或者对外部刺激,如生理胁迫或病原体或金属离子等作出反应,可组成型或差异型地调节结构基因组分的表达。 优选启动子至少能在靶基因表达的那段时间,更优选能在靶基因在真核细胞,组织或器官中开始可测表达之前调节所述细胞,组织或器官中核酸分子的表达。 因此,本发明特别优选强的组成型启动子或可由病毒感染或靶基因表达开始诱导的启动子。 本发明的合成基因特别优选使用在植物和动物中可操作的启动子。优选启动子的例子包括噬菌体T7启动子,噬菌体T3启动子,SP6启动子,lac操纵基因-启动子,tac启动子,SV40晚期启动子,SV40早期启动子,RSV-LTR启动子,CMV IE启动子,CaMV 35S启动子,SCSV启动子,SCBV启动子等。 考虑到与表达靶基因一致或先于靶基因表达的高水平表达的优选需求,特别优选启动子序列是组成型的强启动子,如CMV IE启动子或SV40早期启动子序列,SV40晚期启动子序列,CaMV 35S启动子或SCBV启动子等。本领域技术人员容易知道除上文特别指出的启动子外的其它启动子序列。 本文所用术语“可操作相连”或“可操作地控制”或类似用语指的是在细胞,组织,器官或完整生物体中,结构基因区域或多结构基因区域的表达受与之在空间上相连的启动子序列的控制。 在本发明优选的实施方案中,结构基因区域(即分散的核酸分子或外源核酸分子)或多结构基因区域相对于启动子序列而言被可操作地放置在与启动子取向相关的位置处,从而使得当结构基因区域被转录时可合成mRNA产物,如果该mRNA产物能被翻译,即能编码靶基因或其片段的多肽产物。 然而,本发明并不局限于使用这种方案,本发明显然还可使用合成基因和基因构建体,其中结构基因区域或多结构基因区域相对于启动子序列而言被置于“反义”方向,使得其至少一部分mRNA转录产物与靶基因或其片段编码的mRNA互补。 显然,由于分散的核酸分子,外源核酸分子或多结构基因区域含有靶基因的串联直接和/或反向重复序列,上述构型的所有组合都包括在本发明中。 在本发明的另一个实施方案中,结构基因区域或多结构基因区域与第一个启动子序列和第二个启动子序列可操作相连,其中所述启动子位于其远端和近端,使得所述结构基因区域或多结构基因区域的至少一个单位相对于第一个启动子序列而言被置于“有义”方向,而相对于第二个启动子序列而言被置于“反义”方向。根据此实施方案,优选第一个和第二个启动子不同以防止与它们结合的细胞转录因子之间发生竞争。这种方案的优点是:由第一个和第二个启动子转录而降低细胞中靶基因表达的效果是可以进行比较的,从而可确定各个受试核苷酸序列的最佳取向。 合成基因优选含有其它能有效转录的调节元件,例如转录终止序列。 术语“终止子”指的是位于转录单位末端,用信号报告转录终止的DNA序列。终止子是含有聚腺苷酸化信号的3’-非-翻译DNA序列,其便于在初级转录物的3’末端添加聚腺苷酸化序列。在植物细胞中具有活性的终止子是已知的,文献中有所描述。它们可分离自细菌,真菌,病毒,动物和/或植物或可从头合成。 与启动子序列相同,终止子可以是能在使用它的细胞,组织或器官中可操作的任何终止子序列。 特别适用于本发明之合成基因的终止子的例子包括SV40聚腺苷酸化信号,HSV TK聚腺苷酸化信号,CYC1终止子,ADH终止子,SPA终止子,根瘤农杆菌胭脂氨酸合酶(NOS)基因终止子,花椰菜花叶病毒(CaMV)35S基因终止子,得自玉米的玉米醇溶蛋白基因终止子,核酮糖二磷酸羧化酶-加氧酶小亚单位基因(SSU)基因终止子序列,subclover stunt病毒(SCSV)基因序列终止子,任何不依赖于rho的大肠杆菌终止子或lacZα终止子等。 在特别优选的实施方案中,终止子是在动物细胞,组织或器官中可操作的SV40聚腺苷酸化信号或HSV TK聚腺苷酸化信号,在植物细胞,组织或器官中具有活性的章鱼氨酸合酶(OCS)或胭脂氨酸合酶(NOS)终止子,或在原核细胞中具有活性的lacZα终止子。 本领域技术人员会了解适用于实施本发明的其它终止子序列。无需过多地进行任何实验即可容易地使用这种序列。 将本文所述的合成基因或含有该基因的基因构建体导入(即转染或转化)细胞的方法是本领域技术人员众所周知的。 在另一个实施方案中,使用的基因构建体含有两个或更多个结构基因区域或多结构基因区域,其中各个所述的结构基因区域被可操作地置于其自身启动子序列的控制之下。与本文所述的其它实施方案相同,各个结构基因区域的取向是可变的以使其对靶基因表达的调制作用最大化。 根据此实施方案,控制结构基因单位表达的启动子优选为不同的启动子序列以减少细胞转录因子和RNA聚合酶之间的竞争。优选的启动子选自上文提及的那些启动子。 本领域技术人员知道如何修饰上文所述各个结构基因的排列或构型以由独立的启动子序列调节其表达。 通过例如包含编码可测标记酶的标记核苷酸序列或其功能类似物或衍生物,即可进一步修饰上文所述的合成基因,从而便于检测表达合成基因的细胞,组织或器官中的合成基因。根据此实施方案,标记核苷酸序列可以可翻译的形式存在,并表达为例如与任何一个或多个结构基因的翻译产物的融合多肽,或者表达为非融合多肽。 本领域技术人员应懂得如何产生本文所述的合成基因,以及必要时在所需条件下在特定细胞或细胞类型中表达该合成基因的需求。尤其是,本领域技术人员应知道实施本发明所需的基因操作需要在原核细胞,如大肠杆菌或植物细胞或动物细胞中增殖本文所述的基因构建体或其衍生物。 本发明的合成基因无需被修饰,可以基因构建体的形式,任选将其包含在适当载体,如细胞,病毒颗粒或脂质体等中,作为线性DNA被导入适当细胞,组织或器官中。为了产生基因构建体,将本发明的合成基因插入能在宿主细胞,组织或器官中维持和/或复制和/或表达的适当载体或附加体分子,如噬菌体载体,病毒载体或质粒,粘粒或人工染色体载体,随后将上述载体或附加体分子导入宿主细胞,组织或器官。 因此,本发明的另一方面提供了基因构建体,其至少含有根据本文所述的任何一个或多个实施方案的合成基因和一个或多个复制起点和/或可选择的标记基因序列。 除了提供针对病毒病原体的抗性特征外,基因构建体特别适于转化真核细胞以将新的遗传性状导入其中。这种额外的新性状可由含有本文所述合成基因的相互独立的基因构建体或相同的基因构建体导入。本领域技术人员应能意识到:将编码这种额外性状的基因序列和本文所述的合成基因包含在单个基因构建体中所具有的显著优点,特别是在减少基因操作和组织培养需求以及降低成本方面的优点。 通常,适用于细菌的复制起点或可选择的标记基因与基因构建体中所含的欲被表达或转移至真核细胞或整合至真核细胞基因组的基因序列在物理位置上是分开的。 在特别优选的实施方案中,复制起点在细菌细胞中具有功能性,并含有pUC或ColE1起点,或者,复制起点在真核细胞,组织中是可操作的并更优选含有2微米(2μm)复制起点或SV40复制起点。 本文所用术语“可选择的标记基因”包括赋予表达该基因的细胞以表型的任何基因,它便于鉴定和/或选择被本发明的基因构建体或其衍生物转染或转化的细胞。 本文可使用的适当的可选择标记基因包括氨苄青霉素抗性基因(Ampr),四环素抗性基因(Tcr),细菌卡那霉素抗性基因(Kanr),Zeocin抗性基因(Zeocin是博来霉素家族的药物,也是InVitrogen公司的商标),赋予对抗生素金担子素A之抗性的AURI-C基因,膦丝菌素抗性基因,新霉素磷酸转移酶基因(nptII),潮霉素抗性基因,β-葡糖醛酸酶(GUS)基因,氯霉素乙酰转移酶(CAT)基因,绿色荧光蛋白编码基因或萤光素酶基因等。 优选可选择的标记基因是nptII基因或Kanr基因或绿色荧光蛋白(GFP)编码基因。 本领域技术人员应了解可用于实施本发明的其它可选择的标记基因,本发明不受可选择的标记基因之特性的限制。 本发明可延伸到基本上如本文所述的所有基因构建体,该构建体还包括能在原核或真核细胞,组织或器官中维持和/或复制所述基因构建体和/或将所述基因构建体或其部分整合至真核细胞或生物体的基因序列。 与分散的或外源核酸分子相同,可使用上文所述的标准方法将合成基因和基因构建体导入细胞,组织或器官以调制靶基因表达,所述方法如脂质体介导的转染或转化,用减毒的病毒颗粒或细菌细胞转化细胞,细胞交配,本领域技术人员已知的或Ausubel等(1992)所述的转化或转染方法。 将重组DNA导入植物组织或细胞的其它方法包括但不限于:氯化钙转化法及其变体,尤其是Hanahan(1983)所述的方法,将DNA直接摄入原生质体(Krens等,1982;Paszkowski等,1984),PEG-介导的原生质体摄入(Armstrong等,1990),微粒轰击,电穿孔(Fromm等,1985),微量注射DNA(Crossway等,1986),组织外植体或细胞的微粒轰击(Christou等,1988;Sanford,1988),将核酸真空渗入组织,或对植物而言,基本上如An等(1985),Herrera-Estrella等(1983a,1983b,1985)所述在T-DNA介导下将核酸从农杆菌中转移至植物组织。 为了用微粒轰击细胞,将微粒射入细胞以产生转化细胞。可使用任何适当的轰击细胞转化方法学和装置来实施本发明。Stomp等(美国专利5,122,466)和Sanford和Wolf(美国专利4,945,050)描述了上述装置和方法的例子。当使用轰击转化法时,基因构建体可掺入质粒中,该质粒能在被其转化的细胞中进行复制。 适用于该系统的微粒的例子包括1至5微米的金球。可通过任何适当的技术,如通过沉淀将DNA构建体沉积在微粒上。 在本发明的另一个实施方案中,本文所述的合成基因和基因构建体被调整以整合至表达该合成基因或基因构建体的细胞的基因组中。本领域技术人员应知道,为了将基因序列或基因构建体整合至宿主细胞的基因组中,需要某些附加的基因序列。对植物而言,一般需要根瘤农杆菌Ti质粒之T-DNA的左和右边缘序列。 本发明还延伸包括含有本文所述的合成基因或含有该合成基因的基因构建体的分离的细胞,组织或器官。本发明进一步延伸包括衍生自所述细胞,组织和器官的再生的组织,器官和完整的生物体及其繁殖体和后代。 例如,在含有激素的培养基上,由经转化的植物细胞或组织或器官可再生植物,再生的植物可以采取多种形式,如转化细胞和非转化细胞的嵌合体;克隆转化体(如被转化而含有表达盒的所有细胞);转化和非转化组织的移植物(如在柑桔中将转化的根状茎移植到未转化的接穗中)。通过多种方法可使转化的植物繁殖,所述方法如克隆繁殖法或经典的繁殖技术。例如第一代(或T1)转化植物可以自交以产生纯合的第二代(或T2)转化植物,T2植物可通过经典的繁殖技术进一步繁殖。 参照下列非限制性的实施例进一步地描述本发明。 实施例1 含有与CMV启动子序列和/或SV40L启动子序列可操作相连的BEV聚合酶基因序列的基因构建体 1.商购质粒 质粒pBluescript II(SK+) 质粒pBluescript II(SK+)可购自Stratagene,其含有LacZ启动子序列和lacZ-α转录终止子,具有多克隆位点可插入结构基因序列。该质粒还含有ColE1和fl复制起点和氨苄青霉素抗性基因。 质粒pSVL 质粒pSVL可购自Pharmacia,并可用作SV40晚期启动子序列的来源。pSVL的核苷酸序列也是公众可以得到的,GenBank登记号为U13868。 质粒pCR2.1 质粒pCR2.1可购自Invitrogen,其含有LacZ启动子序列和lacZ-α转录终止子,其间具有可插入结构基因序列的克隆位点。设计质粒pCR2.1是为了利用A-突出端来克隆核酸片段,所述突出端经常是在聚合酶链反应过程中通过Taq聚合酶来合成的。以此方式克隆的PCR片段的侧翼有两个EcoRI位点。该质粒还含有ColE1和fl复制起点以及卡那霉素抗性和氨苄青霉素抗性基因。 质粒pEGFP-N1 MCS 质粒pEGFP-N1 MCS(图1;Clontech)含有CMV IE启动子,该启动子与编码野生型绿色荧光蛋白(GFP;Prasher等,1992;Chalfie等,1994;Inouye和Tsuji,1994)之红移变体的开放阅读框可操作相连,所述变体经最优化可发出较亮的荧光。Cormack等(1996)描述了由pEGFP-N1 MCS编码的特定GFP变体。质粒pEGFP-N1MCS的CMV IE启动子和GFP开放阅读框之间有一个多克隆位点(该位点包括BglII和BamHI位点)和很多其它限制性内切核酸酶裂解位点。克隆至多克隆位点的结构基因如果缺乏功能性的翻译起始位点,则会在转录水平上被表达,然而,这种结构基因序列不会在蛋白质水平上被表达(即翻译)。插入多克隆位点并含有功能性翻译起始位点的结构基因序列如果被克隆至与GFP编码序列相同的框内,则被表达为GFP融合多肽。该质粒还含有位于GFP开放阅读框下游的SV40聚腺苷酸化信号以指导由CMV IE启动子序列转录的mRNA的3’末端的适当加工。该质粒还含有在动物细胞中可起作用的SV40复制起点;新霉素抗性基因,其含有与得自Tn5的新霉素/卡那霉素抗性基因(图1中的Kan/neo)可操作相连的SV40早期启动子(图1中的SV40EP)和HSV胸苷激酶聚腺苷酸化信号(图1中的HSV TK poly(A))以在卡那霉素,新霉素或G418上选择转化细胞;在细菌细胞中起作用的pUC19复制起点(图1中的pUC Ori);和用于产生单链DNA的f1复制起点(图1中的f1 Ori)。 2.表达盒 质粒pCMV.cass 质粒pCMV.cass(图2)是驱动结构基因序列在CMV IE启动子序列的控制之下进行表达的表达盒。按下述通过缺失GFP开放阅读框由pEGFP-N1 MCS衍生得到质粒pCMV.cass:用PinAI和NotI消化质粒pEGFP-N1 MCS,用PfuI聚合酶使其成为平端,然后进行再连接。使用多克隆位点将结构基因序列克隆至pCMV.cass中,该位点与pEGFP-N1MCS的多克隆位点相同,不同之处仅在于它缺乏PinAI位点。 质粒pCMV.SV40L.cass 质粒pCMV.SV40L.cass(图3)含有得自质粒pCR.SV40L(图4)的合成的poly A位点和SV40晚期启动子序列,它们作为SalI片段被亚克隆至质粒pCMV.cass(图2)的SalI位点以使CMV-IE启动子和SV40晚期启动子序列能在相同方向上指导转录。因此,SV40启动子序列5’末端的合成poly(A)位点被用作由该质粒中的CMV IE启动子启动表达的结构基因的转录终止子。该poly(A)位点也可经由SV40晚期启动子和合成的poly(A)位点之间存在的多克隆位点(图5)使所述结构基因能够插入。多克隆位点位于CMV-IE和SV40晚期启动子之后,包括BamHI和BglII位点。 质粒pCMV.SV40LR.cass 质粒pCMV.SV40LR.cass(图4)含有得自质粒pCR.SV40L的SV40晚期启动子序列,它作为SalI片段被亚克隆至质粒pCMV.cass(图2)的SalI位点以使CMV-IE启动子或SV40晚期启动子能在有义或反义方向(需要时)上驱动结构基因或多结构基因单位转录。多克隆位点位于该质粒中方向相反的CMV-IE启动子和SV40晚期启动子序列之间以便于导入结构基因序列。为了表达该质粒中的结构基因序列,必须导入其自身的转录终止序列,该序列位于3’末端,这么做的原因是该质粒中方向相反的CMV-IE启动子和SV40晚期启动子序列之间没有转录终止序列。优选需被导入pCMV.SV40LR.cass的结构基因序列或多结构基因单位含有如下所述的5’和3’聚腺苷酸化信号: (i)当结构基因序列或多结构基因单位由CMV IE启动子序列在有义方向上表达和/或由SV40晚期启动子在反义方向上表达时,5’聚腺苷酸化信号应为反义方向而3’聚腺苷酸化信号应为有义方向;和 (ii)当结构基因序列或多结构基因单位由CMV IE启动子序列在反义方向上表达和/或由SV40晚期启动子在有义方向上表达时,5’聚腺苷酸化信号应为有义方向而3’聚腺苷酸化信号应为反义方向。 或者或另外,如图4所示,可将适当定向的终止子序列置于CMV和SV40L启动子的5’末端。 或者,可进一步修饰质粒pCMV.SV40LR.cass以产生衍生质粒,该衍生质粒含有两个以适当的方向位于CMV IE和SV40晚期启动子序列之间的聚腺苷酸化信号,以便于在有义或反义方向上由CMV IE启动子或SV40启动子序列表达位于其间的任何结构基因。本发明显然包含该衍生质粒。 或者可将适当定向的终止子置于CMV和SV40L启动子的上游以使转录终止在通读反义方向上的两个启动子中的每一个之后发生。 3.中间构建体 质粒pCR.Bgl-GFP-Bam 质粒pCR.Bgl-GFP-Bam(图5)含有得自质粒pEGFP-N1 MCS(图1)的GFP开放阅读框内部区,该区域被可操作地置于lacZ启动子的控制之下。为了产生该质粒,使用扩增引物Bgl-GFP和GFP-Bam由pEGFP-N1 MCS扩增GFP开放阅读框的区域,并将其克隆至质粒pCR2.1中。质粒pCR.Bgl-GFP-Bam中的内部GFP-编码区域缺乏功能性的翻译起始和终止密码子。 质粒pBSII(SK+).EGFP 质粒pBSII(SK+).EGFP(图6)含有得自质粒pEGFP-N1 MCS(图1)的EGFP开放阅读框,该阅读框被可操作地置于lacZ启动子的控制之下。为了产生该质粒,pEGFP-N1 MCS的EGFP编码区作为NotI/XhoI片段被切下并克隆至质粒pBluescript II(SK+)的NotI/XhoI克隆位点。 质粒pCMV.EGFP 质粒pCMV.EGFP(图7)能在CMV-IE启动子序列的控制之下表达EGFP结构基因。为了产生该质粒,将质粒pBSII(SK+).EGFP中的EGFP序列作为BamHI/SacI片段切下并克隆至质粒pCMV.cass(图2)的BglII/SacI位点。 质粒pCR.SV40L 质粒pCR.SV40L(图8)含有得自质粒pSVL(GenBank登记号U13868;Pharmacia)并被克隆至pCR2.1(Stratagene)的SV40晚期启动子。为了产生该质粒,使用含有SalI克隆位点的引物SV40-1和SV40-2扩增SV40晚期启动子以便将扩增的DNA片段亚克隆至pCMV.cass。引物5’末端还含有合成的poly(A)位点以使扩增产物含有SV40启动子序列5’末端的合成的poly(A)位点。 质粒pCR.BEV.1 在标准扩增条件下,使用被称为BEV-1和BEV-2的引物由编码依赖于BEV RNA的RNA聚合酶的全长cDNA克隆扩增所述聚合酶的编码区,该编码区为1,385bp的DNA片段。扩增的DNA含有得自BEV-1引物序列的5’-BglII限制性酶位点和得自BEV-2引物序列的3’-BamHI限制性酶位点。另外,由于BEV-1引物序列含有经改造位于第15-17位的翻译起始信号5’-ATG-3’,扩增的BEV聚合酶结构基因含有与编码BEV聚合酶的核苷酸序列在同一框内的起始位点。因此,扩增的BEV聚合酶结构基因含有紧接BEV聚合酶编码序列上游(即并列)的ATG起始密码子。扩增DNA中没有翻译终止密码子。该质粒示于图9。 质粒pCR.BEV.2 使用引物BEV-1和BEV-3由编码完整BEV聚合酶的全长cDNA克隆扩增所述聚合酶的编码区。引物BEV-3在第5至10位(包括第5和第10位)含有BamHI限制性酶位点,在第11至13位含有翻译终止信号的互补序列。结果,含有翻译起始信号和翻译终止信号的开放阅读框位于BglII和BamHI限制性位点之间。将扩增的片段克隆至pCR2.1(Stratagene)中,产生质粒pCR2.BEV.2(图10)。 质粒pCR.BEV.3 使用扩增引物BEV-3和BEV-4由全长的BEV聚合酶cDNA克隆扩增非翻译性的BEV聚合酶结构基因。引物BEV-4在第5至10位含有BglII克隆位点,该BglII位点下游的序列与BEV聚合酶基因的核苷酸序列同源。在引物BEV-3和BEV-4的扩增DNA产物中不含功能性的ATG起始密码子。BEV聚合酶被表达为多聚蛋白质的一部分,结果,该基因中不含ATG翻译起始位点。将扩增的DNA克隆至质粒pCR2.1(Stratagene)中产生质粒pCR.BEV.3(图11)。 质粒pCMV.EGFP.BEV2 通过将pCR.BEV.2中的BEV聚合酶序列作为BglII/BamHI片段克隆至pCMV.EGFP的BamHI位点,从而产生质粒pCMV.EGFP.BEV2(图12)。 4.对照质粒 质粒pCMV.BEV.2 质粒pCMV.BEV.2(图13)能在CMV-IE启动子序列的控制之下表达完整的BEV聚合酶开放阅读框。为了产生pCMV.BEV.2,将pCR.BEV.2中的BEV聚合酶序列作为BglII-BamHI片段在有义方向上亚克隆至经BglII/BamHI消化的pCMV.cass(图2)中。 质粒pCMV.BEV.3 质粒pCMV.BEV.3(图14)能在CMV-IE启动子序列的控制之下在有义方向上表达非翻译的BEV聚合酶结构基因。为了产生pCMV.BEVnt,将pCR.BEV.3中的BEV聚合酶序列作为BglII-BamHI片段在有义方向上亚克隆至经BglII/BamHI消化的pCMV.cass(图2)中。 质粒pCMV.VEB 质粒pCMV.VEB(图15)能在CMV-IE启动子序列的控制之下表达反义BEV聚合酶mRNA。为了产生质粒pCMV.VEB,将pCR.BEV.2中的BEV聚合酶序列作为BglII-BamHI片段在反义方向上亚克隆至经BglII/BamHI消化的pCMV.cass(图2)中。 质粒pCMV.BEV.GFP 通过将pCR.Bgl-GFP-Bam的GFP片段作为BglII/BamHI片段克隆至经BamHI消化的pCMV.BEV.2中而构建质粒pCMV.BEV.GFP(图16)。该质粒在一些实验中可用作对照,也可用作中间构建体。 质粒pCMV.BEV.SV40-L 质粒pCMV.BEV.SV40-L(图17)含有得自质粒pCR.BEV.2的可翻译的BEV聚合酶结构基因,该基因在有义方向上被插入质粒pCMV.SV40L.cass的CMV-IE启动子和SV40晚期启动子序列之间。为了产生质粒pCMV.BEV.SV40L-0,将BEV聚合酶结构基因作为BglII-BamHI片段亚克隆至经BglII消化的pCMV.SV40L.cass DNA中。 质粒pCMV.0.SV40L.BEV 质粒pCMV.0.SV40L.BEV(图18)含有得自质粒pCR.BEV.2的可翻译的BEV聚合酶结构基因,该基因被克隆至质粒pCMV.SV40L.cass中存在的串联的CMV-IE启动子和SV40晚期启动子序列下游。为了产生质粒pCMV.0.SV40L.BEV,将BEV聚合酶结构基因作为BglII-BamHI片段在有义方向上亚克隆至经BamHI消化的pCMV.SV40L.cass DNA中。质粒pCMV.0.SV40L.VEB 质粒pCMV.0.SV40L.VEB(图19)含有得自质粒pCR.BEV.2的反义BEV聚合酶结构基因,该基因被克隆至质粒pCMV.SV40L.cass中存在的串联的CMV-IE启动子和SV40晚期启动子序列下游。为了产生质粒pCMV.0.SV40L.VEB,将BEV聚合酶结构基因作为BglII-BamHI片段在反义方向上亚克隆至经BamHI消化的pCMV.SV40L.cass DNA中。 5.试验质粒 质粒pCMV.BEVx2 质粒pCMV.BEVx2(图20)含有受CMV-IE启动子序列控制的完整BEV聚合酶开放阅读框的同向重复序列。至少在真核细胞中,离CMV-IE启动子较近的开放阅读框是可翻译的。为了产生pCMV.BEVx2,将质粒pCR.BEV.2的BEV聚合酶结构基因作为BglII-BamHI片段在有义方向上亚克隆至经BamHI消化的pCMV.BEV.2中,直接位于pCMV.BEV.2中已经存在的BEV聚合酶结构基因的下游。 质粒pCMV.BEVx3 质粒pCMV.BEVx3(图21)含有受CMV-IE启动子控制的3个完整的BEV聚合酶开放阅读框的同向重复序列。为了产生pCMV.BEVx3,将质粒pCR.BEV.2的BEV聚合酶片段作为BglII-BamHI片段在有义方向上克隆至pCMV.BEVx2的BamHI位点,直接位于pCMV.BEVx2中已经存在的BEV聚合酶序列的下游。 质粒pCMV.BEVx4 质粒pCMV.BEVx4(图22)含有受CMV-IE启动子控制的4个完整的BEV聚合酶开放阅读框的同向重复序列。为了产生pCMV.BEVx4,将质粒pCR.BEV.2的BEV聚合酶片段作为BglII-BamHI片段在有义方向上克隆至pCMV.BEVx3的BamHI位点,直接位于pCMV.BEVx3中已经存在的BEV聚合酶序列的下游。 质粒pCMV.BEV.SV40L.BEV 质粒pCMV.BEV.SV40L.BEV(图23)含有多结构基因单位,该单位含有2个被可操作地和分开地置于CMV-IE启动子和SV40晚期启动子序列控制之下的BEV聚合酶结构基因。为了产生质粒pCMV.BEV.SV40L.BEV,将pCR.BEV.2中存在的可翻译的BEV聚合酶结构基因作为BglII-BamHI片段在有义方向上亚克隆至经BamHI消化的pCMV.BEV.SV40L-0中存在的SV40晚期启动子序列之后。 质粒pCMV.BEV.SV40L.VEB 质粒pCMV.BEV.SV40L.VEB(图24)含有多结构基因单位,该单位含有2个被可操作地和分开地置于CMV-IE启动子和SV40晚期启动子序列控制之下的BEV聚合酶结构基因。为了产生质粒pCMV.BEV.SV40L.VEB,将pCR.BEV.2中存在的可翻译的BEV聚合酶结构基因作为BglII-BamHI片段在反义方向上亚克隆至经BamHI消化的pCMV.BEV.SV40L-0中存在的SV40晚期启动子序列之后。在此质粒中,BEV聚合酶结构基因在CMV-IE启动子的控制之下在有义方向上表达以产生可翻译的mRNA,而BEV聚合酶结构基因也在SV40启动子的控制之下表达产生反义mRNA。 质粒pCMV.BEV.GFP.VEB 质粒pCMV.BEV.GFP.VEB(图25)含有BEV结构基因的反向重复或回文序列,通过在反向重复中的各个BEV结构基因序列之间插GFP开放阅读框(填充片段)使得所述反向重复或回文序列被中断。为了产生质粒pCMV.BEV.GFP.VEB,首先将pCR.Bgl-GFP-Bam中的GFP填充片段作为BglII-BamHI片段在有义方向上亚克隆至经BamHI消化的pCMV.BEV.2中以产生中间质粒pCMV.BEV.GFP,其中BEV聚合酶编码序列和GFP编码序列包含在相同的5’-BglII-BamHI-3’片段中。然后将pCMV.BEV.2中的BEV聚合酶结构基因作为BglII-BamHI片段在反义方向上克隆至经BamHI消化的pCMV.BEV.GFP中。距质粒pCMV.BEV.GFP.VEB的CMV-IE启动子序列较近的BEV聚合酶结构基因至少在真核细胞中能被翻译。 质粒pCMV.EGFP.BEV2.PFG 质粒pCMV.EGFP.BEV2.PFG(图26)含有GFP回文序列,通过在反向重复中的各个GFP结构基因之间插入BEV聚合酶序列使所述回文序列被中断。为了产生该质粒,将pCR.Bgl-GFP-Bam中的GFP片段作为BglII-BamHI片段在相对于CMV启动子为反义的方向上克隆至pCMV.EGFP.BEV2的BamHI位点。 质粒pCMV.BEV.SV40LR 质粒pCMV.BEV.SV40LR(图27)含有结构基因,该结构基因含有被可操作地和分开地置于方向相反的CMV-IE启动子和SV40晚期启动子序列控制之下的完整的BEV聚合酶开放阅读框,籍此,至少能由全长BEV聚合酶结构基因的两条链潜在地产生BEV聚合酶转录物。为了产生质粒pCMV.BEV.SV40LR,将pCR.BEV.2中存在的可翻译的BEV聚合酶结构基因作为BglII-BamHI片段亚克隆至质粒pCMV.SV40LR.cass中唯一的BglII位点,以使BEV开放阅读框相对于CMV-IE启动子序列而言存在于有义方向上。 本领域技术人员应认识到使用该克隆策略可以产生一种质粒,其中相对于CMV IE启动子序列而言,在反义方向上插入了pCR.BEV.2的BEV聚合酶片段。本发明也包括这种基因构建体。 实施例2 含有与CMV启动子序列和/或SV40L启动子序列可操作相连的猪α-1,3-半乳糖基转移酶(Galt)结构基因序列的基因构建体 1.商购质粒 质粒pcDNA3 质粒pcDNA3可购自Invitrogen,其含有CMV-IE启动子和BGHpA转录终止子,其间具有多克隆位点可插入结构基因序列。该质粒还含有ColE1和fl复制起点和新霉素抗性及氨苄青霉素抗性基因。 2.中间质粒 质粒pcDNA3.Galt 质粒pcDNA3.Galt(BresaGen有限公司,South Australia,澳大利亚;图28)是质粒pcDNA3(Invitrogen),其含有编码猪α-1,3-半乳糖基转移酶基因(Galt)的cDNA序列,该序列可操作地受CMV-IE启动子序列的控制以使其能被表达。为了产生质粒pcDNA3.Galt,将猪α-1,3-半乳糖基转移酶基因的cDNA序列作为EcoRI片段克隆至pcDNA3的EcoRI克隆位点。该质粒还含有ColE1和fl复制起点和新霉素抗性及氨苄青霉素抗性基因。 3.对照质粒 质粒pCMV.Galt 质粒pCMV.Galt(图29)能在CMV-IE启动子序列的控制之下表达Galt结构基因。为了产生质粒pCMV.Galt,将质粒pcDNA3.Galt中的Galt序列以EcoRI片段的形式切下,并在有义方向上克隆至质粒pCMV.cass(图2)的EcoRI位点。 质粒pCMV.EGFP.Galt 质粒pCMV.EGFP.Galt(图30)能在CMV-IE启动子序列的控制之下以Galt融合多肽的形式表达Galt结构基因。为了产生质粒pCMV.EGFP.Galt,将质粒pCMV.Galt(图29)中的Galt序列以BglII/BamHI片段的形式切下,并克隆至pCMV.EGFP的BamHI位点。 质粒pCMV.Galt.GFP 通过将pcDNA3中的Galt cDNA以EcoRI片段的形式在有义方向上克隆至经EcoRI消化的pCMV.EGFP中可产生质粒pCMV.Galt.GFP(图31)。该质粒可用作对照和中间构建体。 质粒pCMV.Galt.SV40L.0 质粒pCMV.Galt.SV40L.0(图32)含有被克隆至pCMV.SV40L.cass中存在的CMV启动子下游的Galt结构基因。为了产生该质粒,将pCMV.Galt中的Galt cDNA片段作为BglII/BamHI在有义方向上克隆至经BglII消化的pCMV.SV40L.cass中。 质粒pCMV.0.SV40L.tlaG 质粒pCMV.0.SV40L.tlaG(图33)含有反义方向的Galt结构基因克隆,所述克隆位于pCMV.SV40L.cass中存在的SV40L启动子下游。为了产生该质粒,将pCMV.Galt中的Galt cDNA片段作为BglII/BamHI在反义方向上克隆至经BamHI消化的pCMV.SV40L.cass中。 质粒pCMV.0.SV40L.Galt 质粒pCMV.0.SV40L.Galt(图34)含有被克隆至pCMV.SV40L.cass中存在的SV40L启动子下游的Galt结构基因。为了产生该质粒,将pCMV.Galt中的Galt cDNA片段作为BglII/BamHI在有义方向上克隆至经BamHI消化的pCMV.SV40L.cass中。 4.试验质粒 质粒pCMV.Galtx2 质粒pCMV.Galtx2(图35)含有受CMV-IE启动子序列控制的Galt开放阅读框的同向重复序列。至少在真核细胞中,离CMV-IE启动子较近的开放阅读框是可翻译的。为了产生pCMV.Galtx2,将质粒pCMV.Galt中的Galt结构基因作为BglII-BamHI片段切下,并在有义方向上克隆至pCMV.Galt的BamHI克隆位点。 质粒pCMV.Galtx4 质粒pCMV.Galtx4(图36)含有4个受CMV-IE启动子序列控制的Galt开放阅读框的同向重复序列。至少在真核细胞中,离CMV-IE启动子较近的开放阅读框是可翻译的。为了产生pCMV.Galtx4,将质粒pCMV.Galtx2中的Galtx2序列作为BglII-BamHI片段切下,并在有义方向上克隆至pCMV.Galtx2的BamHI克隆位点。 质粒pCMV.Galt.SV40L.Galt 质粒pCMV.Galt.SV40L.Galt(图37)被设计用于表达2个Galt有义转录物,一个受CMV启动子驱动,另一个受SV40L启动子的驱动。为了产生该质粒,将pCMV.Galt的Galt cDNA片段作为BglII-BamHI片段在有义方向上克隆至经BglII消化的pCMV.0.SV40.Galt中。质粒pCMV.Galt.SV40L.tlaG 质粒pCMV.Galt.SV40L.tlaG(图38)被设计用于表达受CMV启动子驱动的Galt有义转录物和受SV40L启动子驱动的反义转录物。为了产生该质粒,将pCMV.Galt的Galt cDNA片段作为BglII-BamHI片段在有义方向上克隆至经BglII消化的pCMV.0.SV40.talG中。质粒pCMV.Galt.GFP.tlaG 质粒pCMV.Galt.GFP.tlaG(图39)含有Galt回文序列,该序列因反向重复序列中的各个Galt结构基因之间插入了GFP序列而被中断。为了产生该质粒,将pCMV.Galt的Galt cDNA片段作为BglII-BamHI片段在相对于CMV启动子为反义的方向上克隆至经BamHI消化的pCMV.Galt.GFP中。 质粒pCMV.EGFP.Galt.PFG 质粒pCMV.EGFP.Galt.PFG(图40)含有GFP回文序列,通过在反向重复中的各个GFP结构基因之间插入Galt序列使所述回文序列被中断,其表达由CMV启动子驱动。为了产生该质粒,将pCMV.Galt的Galt序列作为BglII-BamHI片段在有义方向上克隆至经BamHI消化的pCMV.EGFP中,产生中间质粒pCMV.EGFP.Galt(未显示);接着在反义方向上插入pCR.Bgl-pCMV.EGFP.Galt的GFP序列。 质粒pCMV.Galt.SV40LR 质粒pCMV.Galt.SV40LR(图41)被设计用于表达Galt cDNA序列,该序列被克隆至表达盒pCMV.SV40LR.cass中方向相反的CMV和SV40L启动子之间。为了产生该质粒,将pCMV.Galt中的Galt序列作为BglII-BamHI片段在相对于35S启动子为有义的方向上克隆至经BglII消化的pCMV.SV40LR.cass中。 实施例3 含有与35S启动子序列和/或SCBV启动子序列可操作相连的PVY Nia序列的基因构建体 1.二元载体 质粒pART27 质粒pART27是二元载体,经特别设计可与pART7表达盒相容。它含有大肠杆菌和根瘤农杆菌都能用的细菌复制起点,用于选择细菌的壮观霉素抗性基因,用于将DNA从农杆菌转移至植物细胞的左和右T-DNA边缘序列和可选择转化植物细胞的卡那霉素抗性盒。卡那霉素抗性盒位于T-DNA边缘序列之间,pART27还含有唯一的NotI限制性位点,该位点可使在如pART7的载体中制备的构建体克隆被克隆至T-DNA边缘序列之间。pART27的构建描述于Gleave,AP(1992)。 当克隆NotI插入该载体时,可得到两个插入方向。在下列所有实施例中,选择的插入方向与所述pART7构建体中的35S启动子方向相同;这样能使可能因比较具有不同插入方向的不同构建体所致的任何实验假象最小化。 2.商购质粒 质粒pBC(KS-) 质粒pBC(KS-)可购自Stratagene,其含有LacZ启动子序列和lacZ-α转录终止子,其中具有多克隆位点可插入结构基因序列。该质粒还含有ColE1和fl复制起点和氯霉素抗性基因。 质粒pSP72 质粒pSP72可购自Promega,其含有多克隆位点可插入结构基因序列。该质粒还含有ColE1复制起点和氨苄青霉素抗性基因。 3.表达盒 质粒pART7 质粒pART7是被设计用于驱动35S启动子之后的克隆序列表达的表达盒。其含有能辅助克隆的多接头和章鱼氨酸合酶终止子区域。355表达盒的侧翼为两个NotI限制性位点,允许克隆至二元表达载体,如含有唯一NotI位点的pART27。其构建描述于Gleave,AP(1992),图谱示于图43。 质粒pART7.35S.SCBV.cass 质粒pART7.35S.SCBV.cass被设计用于表达克隆至一个质粒中的两个分开的基因序列。为了产生该质粒,通过PCR扩增对应于nos终止子和SCBV启动子的序列,然后克隆至pART7多接头的35S启动子和OCS之间。 所得质粒具有按下列方式排布的元件: 35S启动子-多接头1-NOS终止子-SCBV启动子-多接头2-OCS终止子 克隆至多接头1的序列的表达由35S启动子控制,克隆至多接头2的序列的表达由SCBV启动子控制。 使用两个寡核苷酸由质粒pAHC27(Christensen和Quail,1996)扩增NOS终止子序列: NOS 5’(正向引物;SEQ ID??) 5’-GGATTCCCGGGACGTCGCGAATTTCCCCCGATCGTTC-3’;和 NOS 3’(反向引物;SEQ ID??) 5’-CCATGGCCATATAGGCCCGATCTAGTAACATAG-3’ NOS 5’的核苷酸残基1至17和NOS 3’的核苷酸残基1至15表示经设计通过加入附加限制性位点辅助构建体制备的附加核苷酸。对NOS5’而言,它们是BamHI,SmaI,AatII和NruI位点的前4个碱基。对NOS 3’而言是NcoI和SfiI位点。各个寡核苷酸的其余序列分别与pAHC27中的NOS序列的5’和3’末端同源。 使用两个寡核苷酸由质粒pScBV-20(Tzafir等,1998)扩增SCBV启动子序列: SCBV 5’-CCATGGCCTATATGGCCATTCCCCACATTCAAG-3’;和 SCBV 3’-AACGTTAACTTCTACCCAGTTCCAGAG-3’。 SCBV 5’的核苷酸残基1至17编码经设计用于辅助构建体制备的NcoI和SfiI限制性位点,其余序列与SCMV启动子区域的上游序列同源。SCBV 3’的核苷酸序列1至9编码经设计用于辅助构建体制备的Psp10461和HpaI限制性位点,其余序列与SCBV转录起始位点附近序列的反向和互补序列同源。 使用PCR由pScBV-20扩增序列并克隆至pCR2.1(Invitrogen)以分别产生pCR.NOS和pCR.SCBV。将经SmaI/SfiI切割的pCR.NOS和经SfiI/HpaI切割的pCR.SCBV与经SmaI切割的pART7连接,选择具有适当方向的质粒,并称之为pART7.35S.SCBV.cass,该构建体的图谱示于图43。 4.中间构建体 质粒pBC.PVY 使用标准方法,用分离自被PVY感染的烟草的逆转录RNA为模板,通过PCR扩增PVY基因组区域,并将其克隆至质粒pGEM3(Stratagene)中,产生pGEM.PVY。然后将对应于pVY O链序列(GenBank登记号为D12539)之SalI/HindIII片段第1536-2270位的质粒pGEM.PVY之SalI/HindIII片段亚克隆至质粒pBC(Stratagene公司),产生pBC.PVY(图44)。 质粒pSP72.PVY 通过将pBC.PVY的EcoRI/SalI片段插入经EcoRI/SalI切割的pSP72(Promega)可制备质粒pSP72.PVY。该构建体在PVY插入物的侧翼还含有另外的限制性位点,使用该位点有助于随后的操作。该构建体的图谱示于图45。 质粒ClapBC.PVY 通过将pSP72.PVY的ClaI/SalI片段插入经ClaI/SalI切割的pBC(Stratagene)可制备质粒Cla pBC.PVY。该构建体在PVY插入物的侧翼还含有另外的限制性位点,使用该位点有助于随后的操作。该构建体的图谱示于图46。 质粒pBC.PVYx2 质粒pBC.PVYx2含有得自pBC.PVY之PVY序列的2个头对尾的同向重复。通过将pSP72.PVY中的AccI/ClaI PVY片段克隆至经AccI切割的pBC.PVY中可产生该质粒,其图谱示于图47。 质粒pSP72.PVYx2 质粒pSP72.PVYx2含有得自pBC.PVY之PVY序列的2个头对尾的同向重复。通过将pBC.PVY中的AccI/ClaI PVY片段克隆至经AccI切割的pSP72.PVY中可产生该质粒,其图谱示于图48。 质粒pBC.PVYx3 质粒pBC.PVYx3含有得自pBC.PVY之PVY序列的3个头对尾的同向重复。通过将pSP72.PVY中的AccI/ClaI PVY片段克隆至经AccI切割的pBC.PVYx2中可制备该质粒,其图谱示于图49。 质粒pBC.PVYx4 质粒pBC.PVYx4含有得自pBC.PVY之PVY序列的4个头对尾的同向重复。通过将pSP72.PVYx2中的PVY同向重复序列作为AccI/ClaI片段克隆至经AccI切割的pBC.PVYx2中可制备该质粒,其图谱示于图50。 质粒pBC.PVY.LNYV 所有产生PVY序列之同向回文序列的尝试都失败了,可能是因为这种序列排布在常用的大肠杆菌克隆宿主中不稳定。然而,经证实,间断的回文序列是稳定的。 为了产生PVY序列间断的回文序列,可将约360bp的“填充”片段插入Cla pBV.PVY中PVY序列的下游。填充片段的制备如下: 使用下列引物经PCR扩增最初得自由莴苣坏死黄化病毒(LNYV)基因组RNA制备的cDNA文库(Deitzgen等,1989)的克隆,已知该克隆含有所述病毒的4b基因: LNYV 1:5’-ATGGGATCCGTTATGCCAAGAAGAAGGA-3’;和 LNYV 2:5’-TGTGGATCCCTAACGGACCCGATG-3’ 这些引物的前9个核苷酸编码BamHI位点,其余核苷酸与LNYV 4b基因的序列同源。 扩增之后,将片段克隆至pCR2.1(Stratagene)的EcoRI位点。将此EcoRI片段克隆至Cla pBV.PVY的EcoRI位点,产生如图51所示的中间质粒pBC.PVY.LNYV。 质粒pBC.PVY.LNYV.PVY 质粒pBC.PVY.LNYV.PVY含有PVY序列间断的同向重复序列,为了产生该质粒,将pSP72的HpaI/HincII片段克隆至经SmaI消化的pBC.PVY.LNYV中,分离含有有义方向的质粒,该构建体的图谱示于图52。 质粒pBC.PVY.LNYV.YVPΔ 质粒pBC.PVY.LNYV.YVPΔ含有部分间断的PVY回文序列。回文序列的一个臂含有得自pBC.PVY的所有PVY序列,另一个臂含有PVY的部分序列,该部分序列对应于pSP72.PVY之EcoRV和HincII位点之间的序列。为了产生该质粒,将pSP72.PVY之EcoRV-HincII片段克隆至经SmaI消化的pBC.PVY.LNYV中,分离含有所需方向的质粒,该构建体的图谱示于图53。 质粒pBC.PVY.LNYV.YVP 质粒pBC.PVY.LNYV.YVP含有间断的PVY回文序列。为了产生该质粒,将pSP72.PVY之HpaI-HincII片段克隆至经SmaI消化的pBC.PVY.LNYV中,分离含有反义方向的质粒,该构建体的图谱示于图54。 5.对照质粒 质粒pART7.PVY & pART27.PVY 质粒pART7.PVY(图55)被设计用于在35S启动子的驱动之下表达PVY序列。在这些实验中,该质粒被用作对照构建体以同所有其它的构建体进行比较。为了产生该质粒,将Cla pBC.PVY的ClaI/AccI片段克隆至经ClaI消化的pART7中,选择相对于PVY基因组而言有望表达有义PVY序列的质粒。由35S启动子,PVY序列和OCS终止子组成的序列作为NotI片段被切下并克隆至经NotI消化的pART27中,选择具有所需插入方向的质粒,并称之为pART27.PVY。 质粒pART7.35S.PVY.SCBV.0 & pART7.35S.PVY.SCBV.0 质粒pART7.35S.PVY.SCBV.0(图56)被设计用作转基因植物中由单个质粒共表达多构建体的对照质粒。35S启动子被设计用于表达PVY有义序列,而SCBV启动子是空的。为了产生该质粒,将Cla pBC.PVY的PVY片段作为XhoI/EcoRI片段克隆至经XhoI/EcoRI消化的pART7.35S.SCBV.cass中,产生p35S.PVY.SCBV>0。由驱动有义PVY序列的35S启动子和NOS终止子和SCBV启动子和OCS终止子组成的序列作为NotI片段被切下并克隆至pART27中,分离具有所需插入方向的质粒,并称之为pART27.35S.PVY.SCBV.0。 质粒pART7.35S.0.SCBV.PVY & pART27.35S.0.SCBV.PVY pART27.35S.0.SCBV.PVY(图57)被设计用作转基因植物中由单个质粒共表达多构建体的另一个对照质粒。35S启动子之后未克隆可表达的序列,而SCBV启动子驱动PVY有义片段的表达。为了产生该质粒,将Cla pBC.PVY的PVY片段作为ClaI片段克隆至经ClaI消化的pART7.35S.SCBV.cass中,分离在有义方向上含有PVY序列的质粒并称之为p35S.0.SCBV.PVY。由35S启动子和NOS终止子,驱动有义PVY序列的SCBV启动子和OCS终止子组成的序列作为NotI片段被切下并克隆至pART27中,分离具有所需插入方向的质粒,并称之为pART27.35S.0.SCBV.PVY。 质粒pART7.35S.0.SCBV.YVP & pART27.35S.0.SCBV.YVP pART7.35S.0.SCBV.YVP(图58)被设计用作转基因植物中由单个质粒共表达多构建体的另一个对照质粒。35S启动子之后未克隆可表达的序列,而SCBV启动子驱动PVY反义片段的表达。为了产生该质粒,将Cla pBC.PVY的PVY片段作为ClaI片段克隆至经ClaI消化的pART7.35S.SCBV.cass中,分离在反义方向上含有PVY序列的质粒并称之为p35S.0.SCBV.YVP。由35S启动子和NOS终止子,驱动反义PVY序列的SCBV启动子和OCS终止子组成的序列作为NotI片段被切下并克隆至pART27中,分离具有所需插入方向的质粒,并称之为pART27.35S.0.SCBV.YVP。 6.试验质粒 质粒pART7.PVYx2 & pART27.PVYx2 质粒pART7.PVYx2(图59)被设计用于在转基因植物中由35S启动子驱动表达PVY的同向重复序列。为了产生该质粒,将pBC.PVYx2中的同向重复序列作为XhoI/BamHI片段克隆至经XhoI/BamHI切割的pART7中。由35S启动子,PVY同向重复序列和OCS终止子组成的序列作为NotI片段从pART7.PVYx2中被切下并克隆至经NotI消化的pART27中,分离具有所需插入方向的质粒,并称之为pART27.PVYx2。 质粒pART7.PVYx3 & pART27.PVYx3 质粒pART7.PVYx3(图60)被设计用于在转基因植物中由35S启动子驱动表达PVY的3个同向重复序列。为了产生该质粒,将pBC.PVYx3中的同向重复序列作为XhoI/BamHI片段克隆至经XhoI/BamHI切割的pART7中。由35S启动子,PVY同向重复序列和OCS终止子组成的序列作为NotI片段从pART7.PVYx3中被切下并克隆至经NotI消化的pART27中,分离具有所需插入方向的质粒,并称之为pART27.PVYx3。 质粒pART7.PVYx4 & pART27.PVYx4 质粒pART7.PVYx4(图61)被设计用于在转基因植物中由35S启动子驱动表达PVY的4个同向重复序列。为了产生该质粒,将pBC.PVYx4中的同向重复序列作为XhoI/BamHI片段克隆至经XhoI/BamHI切割的pART7中。由35S启动子,PVY同向重复序列和OCS终止子组成的序列作为NotI片段从pART7.PVYx4中被切下并克隆至经NotI消化的pART27中,分离具有所需插入方向的质粒,并称之为pART27.PVYx4。 质粒pART7.PVY.LNYV.PVY & pART27.PVY.LNYV.PVY 质粒pART7.PVY.LNYV.PVY(图62)被设计用于在转基因植物中由35S启动子驱动表达间断的PVY同向重复序列。通过将pBC.PVY.LNYV.PVY中的间断的PVY同向重复序列作为XhoI/XbaI片段克隆至经XhoI/XbaI消化的pART7中可以制备该构建体。由35S启动子,间断的PVY同向重复序列和OCS终止子组成的序列作为NotI片段从pART7.PVY.LNYV.PVY中被切下并克隆至经NotI消化的pART27中,分离具有所需插入方向的质粒,并称之为pART27.PVY.LNYV.PVY。 质粒pART7.PVY.LNYV.YVPΔ & pART27.PVY.LNYV.YVPΔ 质粒pART7.PVY.LNYV.YVPΔ(图63)被设计用于在转基因植物中由35S启动子驱动表达部分间断的PVY回文序列。通过将pBC.PVY.LNYV.YVPΔ中的部分间断的PVY回文序列作为XhoI/XbaI片段克隆至经XhoI/XbaI消化的pART7中可以制备该构建体。由35S启动子,部分间断的PVY回文序列和OCS终止子组成的序列作为NotI片段从pART7.PVY.LNYV.YVPΔ中被切下并克隆至经NotI消化的pART27中,分离具有所需插入方向的质粒,并称之为pART27.PVY.LNYV.YVPΔ。 质粒pART7.PVY.LNYV.YVP & pART27.PVY.LNYV.YVP 质粒pART7.PVY.LNYV.YVP(图64)被设计用于在转基因植物中由35S启动子驱动表达间断的PVY回文序列。通过将pBC.PVY.LNYV.YVPΔ中的间断的PVY回文序列作为XhoI/XbaI片段克隆至经XhoI/XbaI消化的pART7中可以制备该构建体。由35S启动子,间断的PVY回文序列和OCS终止子组成的序列作为NotI片段从pART7.PVY.LNYV.YVP中被切下并克隆至pART27中,分离具有所需插入方向的质粒,并称之为pART27.PVY.LNYV.YVP。 质粒pART7.35S.PVY.SCBV.YVP & pART27.35S.PVY.SCBV.YVP 质粒pART7.35S.PVY.SCBV.YVP(图65)被设计用于在转基因植物中共表达有义和反义的构建体。为了产生该质粒,将Cla pBC.PVY的PVY片段作为XhoI/EcoRI片段克隆至经XhoI/EcoRI消化的p35S.SCBV.0.SCBV.YVP中。由驱动有义PVY序列的35S启动子和NOS终止子和驱动反义PVY的SCBV启动子和OCS终止子组成的序列作为NotI片段被切下并克隆至pART27中,分离具有所需插入方向的质粒,并称之为pART27.35S.PVY.SCBV.YVP。 质粒pART7.35S.PVYx3.SCBV.YVPx3 & pART27.35S.PVYx3.SCBV.YVPx3 质粒pART7.35S.PVYx3.SCBV.YVPx3(图66)被设计用于在转基因植物中共表达有义和反义的PVY重复序列。为了产生该质粒,通过将Cla pBC.PVYx3中的3个PVY同向重复序列作为ClaI/AccI片段克隆至经ClaI消化的p35S.SCBV.cass中并分离具有反义方向的质粒可构建中间质粒pART7.35S.0.SCBV.YVPx3。为了构建p35S.PVYx3.SCBV.YVPx3,将Cla pBC.PVYx3中的3个PVY同向重复序列作为KpnI/SmaI片段克隆至经KpnI/SmaI消化的p35S.0.SCBV.YVPx3中以产生p35S.PVYx3.SCBV.YVPx3。包括两个启动子,终止子和PVY同向重复序列的序列作为NotI片段被分离并克隆至pART27中,选择具有适当方向的质粒,并称之为pART27.35S.PVYx3.SCBV.YVPx3。 质粒pART7.PVYx3.LNYV.YVPx3 & pART27.PVYx3.LNYV.YVPx3 质粒pART7.PVYx3.LNYV.YVPx3(图67)被设计用于将PVY的3个重复序列表达为间断的回文序列。为了产生该质粒,通过将pBC.PVY.LNYV.YVP中的PVY.LNYV.YVP作为AccI/ClaI片段克隆至质粒pART7.PVYx2中可构建中间质粒pART7x3.PVY.LNYV.YVP。通过将pBC.PVYx2中的另一个PVY同向重复序列作为AccI/ClaI片段克隆至经ClaI消化的pART7x3.PVY.LNYV.YVP中可制备pART7.35S.PVYx3.LNYV.YVPx3。将pART7.35S.PVYx3.LNYV.YVPx3中的序列,包括35S启动子,所有PVY序列和OCS终止子作为NotI片段切下并克隆至经NotI消化的pART27中,分离具有适当方向的质粒,并称之为pART27.35S.PVYx3.LNYV。 质粒pART7.PVY multi & pART27.PVY multi 质粒pART7.35S.PVY multi(图68)被设计用于在转基因植物中表达较多的PVY同向重复序列区域。通过按下述退火两个部分互补的寡核苷酸制备了PVY之72bp的PVY Nia区域的高级同向重复序列: PVY1:5’-TAATGAGGATGATGTCCCTACCTTTAATTGGCAGAAATTTCTGTGGAAAGACAGGGAAATCTTTCGGCATTT-3’;和 PVY2:5’-TTCTGCCAATTAAAGGTAGGGACATCATCCTCATTAAAATGCCGAAAGATTTCCCTGTCTTTCCACAGAAAT-3’ 用T4多核苷酸激酶使寡核苷酸磷酸化,加热,缓慢冷却以允许自我退火,用T4DNA连接酶连接,用Klenow聚合酶补平末端并克隆至pCR2.1(Invitrogen)中。分离含有多个重复序列的质粒,将序列作为EcoRI片段在有义方向上克隆至经EcoRI消化的pART7中,产生中间质粒pART7.PVY multi。为了产生pART27.PVY multi,将35S启动子,PVY序列和OCS终止子作为NotI片段切下并克隆至经NotI消化的pART27中。分离具有适当插入方向的质粒并称之为pART27.PVYmulti。 实施例6 灭活哺乳动物中的病毒基因表达 通过在稳定转化的细胞系中表达病毒序列产生病毒免疫系。 具体地说,该方法使用的是裂解病毒,因为细胞裂解可提供很简单的筛选方式,还能直接选择可能很少发生的转化事件,而该转化事件可能会产生病毒免疫力。将得自简单的单链RNA病毒(牛肠道病毒-BEV)或复杂的双链DNA病毒,即单纯疱疹病毒I(HSV I)的亚-基因组片段克隆至适当载体中并在转化细胞中表达。用经设计用于在强的巨细胞病毒(CMV-IE)启动子驱动之下表达病毒序列的基因构建体转化哺乳动物细胞系。所用序列包括特定的病毒复制酶基因。也可使用含有代表性病毒基因序列的随机“鸟枪”文库和导入的分散的核酸分子来靶向病毒序列的表达。 本文描述了用于此方法的基因构建体的例子,其含有得自依赖于BEV RNA的RNA聚合酶基因的核苷酸序列。 对病毒聚合酶构建体而言,需产生较多数目(约100个)的转化细胞系并用各种病毒进行感染。对于被鸟枪文库转化的细胞而言,需产生很多数目(几百)的转化细胞系,并批量筛选其病毒免疫力。用病毒攻击之后,选择抗性细胞系并进一步进行分析以确定赋予其免疫力的序列。 抗性细胞系支持导入的核苷酸序列在哺乳动物系统中灭活病毒基因表达的能力。 另外,使用由此实验得到的抗性细胞系能更精确地确定所观察到的调制的分子和生物化学特性。 实施例8 将病毒抗性导入转基因植物 使用三亲本交配法,独立地用构建体pART27.PVY,pART27.PVYx2,pART27.PVYx3,pART27.PVYx4,pART27.PVY.LNYV.PVY,pART27.PVY.LNYV.YVPΔ,pART27.PVY.LNYV.YVP,pART27.35S.PVY.SCBV.0,pART27.35S.0.SCBV.PVY,pART27.35S.0.SCBV.YVP,pART27.35S.PVY.SCBV.YVP,pART27.35S.PVYx3.SCBV.YVPx3,pART27.PVYx3.LNYV.PVYx3和pART27.PVYx10转化根瘤农杆菌菌株LBA4404。少量制备这些菌株的DNA,通过用NotI进行限制性酶切检查以确保它们含有适当的二元载体。 使用标准方法用这些农杆菌菌株转化烟草(Nicotianatabaccum)(W38品种)。切下推定的转化的苗,栽种于含有卡那霉素的培养基中。在这些条件下我们始终观察到仅有转基因的苗才能在卡那霉素平皿上生根。将生根的苗转移至土壤中,使其扎根于土壤。2至3周后,选择至少具有3套叶的长势良好的植株,用PVY感染这些植株。 病毒接种物制备自先前被病毒感染过的W38烟草,用carbarundum磨碎10ml 100mM磷酸钠缓冲液(pH7.5)中的约2g显示出明显病毒症状的叶材料,再加入磷酸钠缓冲液将接种物稀释至200ml。将carbarundum洒在每个转基因植物的两片叶子上,然后每片叶子上使用0.4ml接种物,并用手指相当有力地摩擦叶。使用该方法用PVY感染100%的非转基因对照植物。 为了检测病毒抗性和免疫力,需监测转基因植物的症状发展情况。W38烟草上的PVY毒株(PVY-D,澳大利亚PVY分离株)症状明显,可以容易地观察到接种叶上方的两片叶叶脉清晰,而随后的叶一致地显示出萎黄病损害。对症状发展情况监测6周。 如果转基因株系显示出减弱的病毒症状,即显示出萎黄病损害的叶减少,则将其描述为抗性株系。抗性可以处于很强的抗性和弱抗性之间,前者表现为仅在植物上观察到很少的病毒损害,后者表现为在植物生长的后期才发生的叶上症状的减弱。 绝对未显示出病毒症状之迹象的转基因植物被称为免疫植物。为了确保这些植物具有免疫力,用病毒重新接种它们,大多数植物仍具有免疫力,少数显示出症状的植物仍被称为抗性植物。 对产生的植物株系进行Southern印迹,监测后代的抗性以确定抗性/免疫力是可遗传的。另外,通过用其它PVY毒株攻击植物株系来监测病毒抗性的幅度以确定宿主范围的易感性是否被改良。 这些实验的结果描述于表2。这些数据表明含有串联重复的靶基因序列的构建体无论是采取回文序列的构型还是采取作为同向重复序列的间断的回文序列的构型都能赋予转基因植物病毒抗性和/或免疫力。 因此,这种反向的和/或直接的重复序列都能调制病毒靶基因在转基因植物中的表达。 联合使用同向和反向重复序列的构建体,即pART27.35S.PVYx3.SCBV.YVPx3和pART27.PVYx3.LNVY.YVPx3也可用于调制基因表达。 实施例9 在动物细胞中灭活Galt 为了检测Galt的灭活,用相关构建体转化猪PK2细胞。PK2细胞组成型地表达Galt酶,其活性导致这些细胞的细胞表面表达的一系列蛋白质上添加了多个α-1,3-半乳糖基。使用脂转染法转化细胞,使用遗传霉素选择稳定转化的细胞系。 作为初步测定,使用凝集素IB4探测细胞系中由Galt编码的表位,即装饰细胞表面蛋白的α-1,3-半乳糖基组成成分的存在。原位或通过FACS分选测定IB4结合。 为了进行原位结合,用冷甲醇将细胞固定于固体支持物达5分钟,用PBS(磷酸盐缓冲盐水)冲洗细胞,用含1%BSA的PBS封闭非特异性的IB4结合达10分钟。室温下,用含有20μg/ml IB4-生物素(Sigma),1%BSA的PBS探测固定细胞达30分钟,用PBS洗涤细胞,然后用含有1∶200稀释度的ExtrAvidin-FITC(Sigma)的PBS探测30分钟,再用PBS冲洗。在这些条件下使用荧光显微镜检查细胞,PK2对照细胞的外表面被均匀地染成了绿色。 为了进行FACS分析,用胰蛋白酶处理细胞之后使其悬浮,用HBSS/Hepes(含20mM Hepes的Hank’s缓冲盐水溶液,pH7.4)洗涤细胞,于4℃用含10μg/ml IB4-生物素(Sigma)的HBSS/Hepes探测45分钟。用HBSS/Hepes洗涤细胞,于4℃用含有1∶200稀释度的ExtrAvidin-FITC(Sigma)的HBSS/Hepes探测45分钟,用冷HBSS/Hepes冲洗,然后进行FACS分选。 使用该方法测定转化细胞系的Galt灭活并定量评估构建体的有效性。另外,分离显示出Galt灭活的细胞系,并进行进一步的分子分析以确定基因灭活的机制。 本分案申请是基于申请号为99804255.2,申请日为1999年03月19日,发明名称为“控制基因表达”的中国专利申请的分案申请。 参考文献 1.An et al.(1985)EMBO J 4:277-284. 2.Armstrong,et al.,植物细胞报道9:335-339,1990. 3.Ausubel,F.M.et al.(1987)In:最新分子生物学方法,WileyInterscience(ISBN 047140338). 4.Chalfie,M.etal(1994)科学263:802-805. 5.Christensen,A.H.and Quail,P.H.(1996)转基因研究5:213-218. 6.Christou,P.,et al.植物生理学87:671-674,1988. 7.Cormack,B.et al.(1996)基因173:33-38. 8.Crossway et al.,Mol.Gen.Genet.202:179-185,1986. 9.Dorer,D.R.,and Henikoff,S.(1994)细胞7:993-1002. 10.Fromm et al.美国国家科学院院报82:5824-5828,1985. 11.Gleave,A.P.(1992)植物分子生物学20:1203-1207. 12.Hanahan,D.(1983)分子生物学杂志166:557-560. 13.Herrera-Estella et al.,自然303:209-213,1983a. 14.Herrera-Estella et al.,EMBO J.2:987-995,1983b. 15.Herrera-Estella et al.In:植物基因工程Cambridge UniversityPress,N.Y.,pp 63-93,1985. 16.Inouye,S.and Tsuj i,F.I.(1994)FEBS Letts.341:277-280. 17.Jackson,I.J.(1995)遗传学年鉴28:189-217. 18.Krens,F.A.,et al.,自然296:72-74,1982. 19.Kwon,B.S.et al.(1988)生物化学和生物物理学研究通讯153:1301-1309. 20.Pal-Bhadra,M.et al.(1997)细胞90:479-490. 21.Paszkowski et al.,EMBO J.3:2717-2722,1984. 22.Prasher,D.C.et al.(1992)基因111:229-233. 23.Sanford,J.C.,et al.,微粒科学和技术5:27-37,1987. 序列表 (1)一般资料: (i)申请人:AgGene Australia Pty.Ltd和以昆士兰Primary工业部为代表的昆士兰政府 (ii)发明名称:合成基因和含有该合成基因的基因构建体 (iii)序列数目:16 (iv)联系地址: (A)联系人:DAVIES COLLISON CAVE (B)街道:1 LITTLE COLLINS STREET (C)城市:墨尔本 (D)州:VICTORIA (E)国家:澳大利亚 (F)邮政编码:3000 (v)计算机可读形式: (A)介质类型:软盘 (B)计算机:IBM PC可兼容机 (C)操作系统:PC-DOS/MS-DOS (D)软件:PatentIn Release #1.0,Version #1.25 (vi)本申请的资料: (A)申请号:AU临时申请 (B)申请日: (viii)律师/代理人资料: (A)姓名:HUGHES EL,JOHN E L (ix)电讯资料: (A)电话:+61392542777 (B)传真:+61392542770 (C)电传:AA 31787 (2)SEQ ID NO:1的资料: (i)序列特征: (A)长度:38个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:1: CGGCAGATCT AACAATGGCA GGACAAATCG AGTACATC 38 (2)SEQ ID NO:2的资料: (i)序列特征: (A)长度:31个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:2: CCCGGGATCC TCGAAAGAAT CGTACCACTT C 31 (2)SEQ ID NO:3的资料: (i)序列特征: (A)长度:29个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:3: GGGCGGATCC TTAGAAAGAA TCGTACCAC 29 (2)SEQ ID NO:4的资料: (i)序列特征: (A)长度:28个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:4: CGGCAGATCT GGACAAATCG AGTACATC 28 (2)SEQ ID NO:5的资料: (i)序列特征: (A)长度:26个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:5: AGATCTGTAA ACGGCCACAA GTTCAG 26 (2)SEQ ID NO:6的资料: (i)序列特征: (A)长度:26个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:6: GGATCCTTGT ACAGCTCGTC CATGCC 26 (2)SEQ ID NO:7的资料: (i)序列特征: (A)长度:74个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:7: GTCGACAATA AAATATCTTT ATTTTCATTA CATCTGTGTG TTGGTTTTTT GTGTGATTTT 60 TGCAAAAGCC TAGG 74 (2)SEQ ID NO:8的资料: (i)序列特征: (A)长度:31个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:8: GTCGACGTTT AGAGCAGAAG TAACACTTCC G 31 (2)SEQ ID NO:9的资料: (i)序列特征: (A)长度:30个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:9: CCCGGGGCTT AGTGTAAAAC AGGCTGAGAG 30 (2)SEQ ID NO:10的资料: (i)序列特征: (A)长度:31个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:10: CCCGGGCAAA TCCCAGTCAT TTCTTAGAAA C 31 (2)SEQ ID NO:11的资料: (i)序列特征: (A)长度:38个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:11: CGGCAGATCT AACAATGGCA GGACAAATCG AGTACATC 38 (2)SEQ ID NO:12的资料: (i)序列特征: (A)长度:31个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:12: CCCGGGATCC TCGAAAGAAT CGTACCACTT C 31 (2)SEQ ID NO:13的资料: (i)序列特征: (A)长度:29个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:13: GGGCGGATCC TTAGAAAGAA TCGTACCAC 29 (2)SEQ ID NO:14的资料: (i)序列特征: (A)长度:28个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:14: CGGCAGATCT GGACAAATCG AGTACATC 28 (2)SEQ ID NO:15的资料: (i)序列特征: (A)长度:30个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:15: CCCGGGGCTT AGTGTAAAAC AGGCTGAGAG 30 (2)SEQ ID NO:16的资料: (i)序列特征: (A)长度:31个碱基对 (B)类型:核酸 (C)链型:单链 (D)拓扑结构:线性 (ii)分子类型:DNA (xi)序列描述:SEQ ID NO:16: CCCGGGCAAA TCCCAGTCAT TTCTTAGAAA C 31