首页 / 从环己烷制备环己醇、环己酮的工艺

从环己烷制备环己醇、环己酮的工艺失效专利 发明

技术内容

本发明涉及从环已烷制备环已醇、环已酮的工艺。 目前环已醇、环已酮的制备,通常是用含分子氧的气体氧化环已烷,生成含环已基过氧化氢的氧化混合物,然后处理这种氧化混合物使环已基过氧化氢分解生产环已醇,环已酮。一般有二种工艺途径,一种是均相催化分解,一种是非均相催化分解,这二种工艺均是将氧化混合物的处理一步完成,其环已基过氧化氢分解反应的转化率或生成环已醇、环已酮的分子收率不理想。 本发明的目的是提供一种从环已烷制备环已酮和环已醇的工艺,使环已基过氧化氢分解反应的转化率和生成环已醇、环已酮的分子收率大为提高,且降低消耗,降低成本。 本发明的目的是这样实现的。 本发明包括:(A)在氧化反应器中用含分子氧的气体氧化环已烷生产含环已基过氧化氢的氧化混合物;(B)将含环已基过氧化氢的氧化混合物分解,生产环已醇和环已酮;(C)在分离器中分离后蒸馏出环已酮和环已醇。 其特征在于分解含环已基过氧化氢的氧化混合物的工艺分二步进行。 第一步在PH=5-8范围内用非均相催化工艺分解或在酸性条件下用均相催化工艺分解。 第二步在PH>13的强碱性条件下用非均相催化分解工艺分解。且第一步分解反应后不需进行分离处理,立即着手进行第二步分解。 所述非均相催化分解是在80-155℃,压力100KPa-1200KPa,用浓度为0.3-1000ppm的水溶性过渡金属盐作催化剂,在碱金属氢氧化物和有机酸盐水溶液存在下处理氧化物。 所述均相催化分解是在温度80°-155℃,压力100KPa-1200KPa条件下,用浓度为0.3-1000ppm的油溶性过渡金属盐作催化剂处理氧化混合物。 所述用催化剂的过渡金属盐为钴盐或铬盐。 以下结合实施例对本发明予以详细说明: 本发明实施例1: 本实施例的工艺流程如图1所示。 在氧化反应器中,加入160000kg/h环已烷,控制温度165℃,压力1200KPa,不加催化剂,使环已烷在液相中被空气中分子氧部分氧化,环已烷的转化率约为4.5mol%。每小时生成的氧化混合物中含环已烷约15400kg、环已醇1275kg、环己酮538kg、环已基过氧化氢5475kg,及其它付产物。此氧化混合物经热交换和冷却后,温度为70℃左右,进入第一个分解反应器,加入非均相催化剂醋酸钴水溶液,使分解反应器中Co++含量为1ppm,加入3%NaOH循环碱2000kg/h,使1号分解器的PH控制在7±1,温度控制在95℃左右,压力控制在1200KPa左右,此反应器中的分解反应由于是在中性条件下进行分解,反应条件温和,环已基氧化氢分解生产环已醇和环已酮的分子收率提高。再送 入2号分解反应器。在2号分解反应器中,通过管道7加入13%NaOH新鲜碱5100kg/h,控制PH>13,温度95℃左右,压力1200KPa继续进行分解。由于强碱性加快了分解反应速度,使环已基过氧化氢分解完全。每小时分解产物中含环已烷153800kg,环己醇3065kg,环己酮3294kg。在此二步分解工艺中,环已基过氧化氢分解生成环已醇和环已酮的分子收率为92%。分解产物经静置分层分离后上层油相送去静馏分离,其中环已烷返回氧化反应器。每小时得环已醇和环已酮6359kg。下层碱水相部分循环至1号分解反应器,其余的送去废碱处理装置。 对比实施例1: 与图1实施工艺流程相同。 氧化反应器条件相同,氧化混合物含环已烷,环己醇、环已酮量相同,进入第一分解反应器后,加入非均相催化剂醋酸钴量相同。在第一个分解反应器加入3%  NaOH循环碱34000kg/h和13%  NaOH新鲜碱5600公斤/小时,使第一个反应器的PH>13,控制温度85℃左右,压力1200KPa,由于该分解反应在强碱性条件下进行,分解速度快,分解生成的环已醇和环已酮的分子收率较低,再进行2号、3号分解反应器,在与1号分解反应器相同条件下进行再分解,使环已基过氧化氢完全分解。此时,环已醇和环已酮的分子收率为88%。每小时分解产物中含环已烷153900kg,环已醇2914kg,环已酮3186kg。分解产物经静置分层分离,上层油相送精馏分离,每小时得环已酮、环已醇6100kg,环已烷则返回氧化反应器。 本发明实施例2 本实施例工艺流程如图2所示。 在四个容积分别为10m3的氧化反应器中,每小时连续加入30000kg环已烷,保持环已烷中含催化剂Co++0.3ppm,在156℃和1000KPa下,用空气中分子氧部分氧化环已烷。每小时得含环已烷28400kg,环已醇700kg,环已酮370kg、环已基过氧化氢520kg,已二酸180kg,酯140kg,及少量其他付产物的氧化混合物。将此氧化混合物溢流到分解器中,在1000KPa,130℃下继续进行热分解和均相催化分解,环已基过氧化物在此分解器中分解转化率为20%,进入皂化塔。在皂化塔底部加入3%NaOH循环碱4000kg,使皂化塔下半段PH=7±1,控制温度为130℃、压力1200KPa、由于皂化塔下半段的PH值比分解器高,大量循环碱的加入而发生乳化,分解反应速度加快,大部分环已基过氧化氢在中性乳化条件下分解,另外在管道3中加入1500kg13%NaOH新鲜碱,使皂化塔上半段碱度上升,PH>13。皂化塔顶出口水相中含NaOH3%以上,分解反应速度加快,使环已基过氧化氢完全分解。且使皂化塔上半段和后面的物料不再乳化,以利于后面分离器的分层分离。在分离器中,上层油相送去精馏分离,分离出的环已烷返回氧化反应器。每小时得环已醇和环已酮1540kg。下层碱水相含NaOH3%,水50-60%,有机酸钠盐37-47%,每小时循环至皂化塔底部4000kg,其余的送去废碱处理装置。此工艺中环已基过氧化氢分解生成环已醇和环已酮的分子回收率为90%。在此工艺中,也可以在分解器加入循环碱进行第 一步中性分解,在皂化塔加入新鲜碱进行第二步强碱性分解,也可以在分解器中加入较高浓度的可溶性过渡金属外,加强第一步的均相分解。 对比实施例2 工艺流程及氧化反应器条件与实施例2完全相同,所得氧化混合物量也相同,分解器中条件相同,进入皂化塔后,每小时从1号管道加入13%NaOH新鲜碱1800kg,2号管道再加入3%NaOH循环碱3000kg,此时PH>13控制温度130℃,压力1200KPa,分解后物料在分离器中分离后精馏得环已醇和环已酮1410kg/小时。此工艺中环已基过氧化氢分解生成环已醇和环已酮的分子收率为64%。 本发明实施例3 本实施例工艺流程如图3所示。 本例氧化反应器和分解反应器为一釜四室或一釜五室。每小时160000kg环已烷在液相中被空气中分子氧氧化,控制氧化反应温度为156℃,压力1000KPa,加入辛酸钴作均相氧化催化剂,控制CO++浓度为1ppm,并加入少量积二磷酸酯防止结渣。每小时空气通入量为8700MM3,每小时生成的氧化混合物中含环已烷152800kg,环已醇3329kg,环已酮1056kg,环已基过氧化氢1440kg,已二酸582kg,酯515kg,其他付产物674kg。将以上氧化混合物送入到中和分解反应器A室,在压力1000KPa,温度150℃条件下,将3% NaOH循环碱20000kg/小时送入分解反应器的A室,使A室PH=7±1,发生乳化分解。然后将物料再溢流 到B室,每小时从管道3向B室加入13%NaOH新鲜碱5400kg,使B室PH>13。物料进入分离器,上层有抗相精馏分离,分离的环已烷返回氧化反应器。每小时得环已醇和环已酮产品6279kg,其环已基过氧化氢分解生成环已醇和环已酮的分子收率为90%。下层水相含3%  NaOH和27-47%有抗酸钠盐,部分循环到分解反应器A室。其余的进入废碱处理。 对比实施例3。 工艺流程如图3所示。 氧化反应器的条件与实施例3完全相同,将氧化混合物送入分解反应器A室,在压力1000KPa、温度150℃条件下,每小时从管道1加入13%NaOH新鲜碱6400kg,从管道2向A室加入3%NaOH循环碱2000kg,进行中和分解反应。然后再溢流进入B室和C室,进一步中和分解后进入分离器。上层油相送去精馏分离,每小时得环已醇、环已酮产品6040kg,其环已基过氧化氢分解生成环已醇和环已酮的分子收率为54%。 本发明实施例4。 工艺流程如图4所示。 在4个32m2的立式氧化反应塔中,每小时送入140000公斤环已烷,控制1、2、3、4号氧化反应塔的温度为181℃、176℃、170℃、166℃,压力1900KPa,不加催化剂,从第4个氧化器中排出氧化混合物,经予浓缩和脱水后,进入分解反应器,在压力300KPa,温度92℃及6ppm铬酸叔丁酯催化剂存在下,停留30分钟,环已基过氧化氢发生均相催化 分解,分解后产物组成大约为环已烷91.5%,环已基过氧化氢0.5%,环已醇、环已酮7.2%,其他组分0.8%,将以上物料送入中和分解皂化反应器,每小时从管道1加入合13%NaOH新鲜碱2000kg,从管道2加入3%NaOH循环碱10000kg,使物料中酸得到中和,酯得到皂化。剩余的环已基过氧化氢在强碱性条件下(PH>13),进一步发生非均相催化分解。反应物料经静置分层、分离。下层为水相,含3%  NaOH和一些有机酸钠盐,每小时有1000kg循环至分解、皂化反应器,其余的进入废碱处理。油相送人精馏塔,蒸出的环已烷返回氧化反应器,每小时得含环已醇、环已酮99.0%的产品各5600kg。 对比实施例4 工艺流程、条件与实施例4相同。区别在于,均相催化分解后的产物直接送入精馏塔分离。蒸出的环已烷返回氧化反应器,每小时得含环已醇、环已酮98.0%的醇、酮产品各5360kg。 本发明由环已烷制备环已酮、环已醇的工艺,使环已醇、环已酮的分子收率大为提高,降低了消耗,降低了成本。