首页 / 自动化机器和系统

自动化机器和系统实质审查 发明

技术领域

[0001] 本公开的各方面总体上涉及自主机器、控制器、代码段及其方法。

相关背景技术

[0002] 对于各种任务,自主机器可用作人类的替代、人类的辅助和其他服务的提供方。自主机器被用于工业环境,诸如制造或交付环境,等等。此类自主机器的能力正在不断发展和研究。各种需求被引导到通过自主机器来解决更复杂和更全面的任务,以及减少它们的就业工作量,等等。

具体实施方式

[0004] .以下详细描述中对附图进行参考,附图通过图示方式示出了可在其中实施本公开的示例性细节和方面。
[0005] 在本申请中使用词“示例性”来意指“充当示例、实例或说明”。在本申请中被描述为“示例性”的任何方面或设计不一定被解释为相对于其它方面或设计为优选的或有优势的。
[0006] 贯穿附图,应注意,除非另有说明,否则相同的附图标记用于描绘相同或相似的要素、特征和结构。
[0007] 短语“至少一个”和“一个或多个”可被理解为包括大于或等于一的数量(例如,一个、两个、三个、四个、[...]等)。关于一组要素的短语“至少一个”在本文中可用于意指来自由要素组成的组的至少一个要素。例如,关于一组要素的短语“……中的至少一个”在本文中可用于意指以下各项中的选择:所列要素中的一个、多个的所列要素中的一个要素、多个个体所列要素、或多个的数个个体所列要素。
[0008] 说明书和权利要求书中的词语“复数个(plural)”和“多个(multiple)”明确地指代大于一的量。因此,任何明确地援引上述词语来指代某个数量的要素的短语(例如,“复数个[要素]”、“多个[要素]”)明确地指代多于一个的所述要素。例如,短语“多个(a plurality)”可被理解为包括大于或等于二的数量(例如,两个、三个、四个、五个、[...]等)。
[0009] 说明书中和权利要求书中的短语“(……的)组”、“(……的)集”、“(……的)集合”、“(……的)系列”、“(……的)序列”、“(……的)分组”等(如果存在)指代等于或大于一的量,即一个或多个。术语“适当的子集”、“减小的子集”、和“较小的子集”指代集合的不等于该集合的子集,说明性地,指代集合的包含比该集合少的元素的子集。
[0010] 如本文中所使用的术语“数据”可被理解为包括采用任何合适的模拟或数字形式的信息,例如,作为文件、文件的部分、文件集合、信号或流、信号或流的部分、信号或流的集合等等来提供的信息。进一步地,术语“数据”还可用于意指对信息的例如以指针的形式的引用。然而,术语“数据”不限于上述示例,并且可采取各种形式并表示如本领域中理解的任何信息。
[0011] 如本文中所使用的术语“处理器”或“控制器”可被理解为允许处置数据的任何种类的技术实体。可根据由处理器或控制器可以执行的一个或多个特定功能来处置数据。进一步地,如本文中所使用的处理器或控制器可被理解为任何种类的电路,例如任何种类的模拟或数字电路。处理器或控制器因此可以是或可包括模拟电路、数字电路、混合信号电路、逻辑电路、处理器、微处理器、中央处理单元(CPU)、图形处理单元(GPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、集成电路、专用集成电路(ASIC)等、或其任何组合。下文将进一步详细描述的相应功能的任何其他种类的实现方式也可被理解为处理器、控制器或逻辑电路。应理解,本文中详述的处理器、控制器或逻辑电路中的任何两个(或更多个)可被实现为具有等效功能的单个实体等等,并且相反地,本文中详述的任何单个处理器、控制器或逻辑电路可被实现为具有等效功能的两个(或更多个)分开的实体等等。
[0012] 如本文中适用的术语“存储器”可以被理解为数据或信息可以被存储在其中以供检取的计算机可读介质(例如,非暂态计算机可读介质)。对本文中所包括的“存储器”的引用可因此被理解为是指易失性或非易失性存储器,包括随机存取存储器(RAM)、只读存储器TM(ROM)、闪存、固态存储、磁带、硬盘驱动器、光驱、3D XPoint 等等、或其任何组合。在本文中,寄存器、移位寄存器、处理器寄存器、数据缓冲器等等也可由术语存储器包含。术语“软件”是指任何类型的可执行指令,包括固件。
[0013] 除非明确地指定,否则术语“发射”涵盖直接(点对点)和间接(经由一个或多个中间点)的发射两者。类似地,术语“接收”涵盖直接和间接的接收两者。此外,术语“发射”、“接收”、“传递”和其他类似术语涵盖物理传输(例如,对无线电信号的传输)和逻辑传输(例如,通过逻辑软件级连接对数字数据的传输)两者。例如,处理器或控制器可通过与另一处理器或控制器的软件级连接以无线电信号的形式对数据进行发射或接收,其中无线电层组件(诸如射频(RF)收发机和天线)执行物理发射和接收,并且处理器或控制器通过软件级连接执行逻辑发射和接收。术语“传递”涵盖发射和接收中的一者或两者,即,在传入方向和传出方向中的一个方向或这两个方向上的单向或双向传输。一般来说,术语“通信”可以包括数据的交换,例如,在一个或两个传入和传出方向上进行单向或双向交换。术语“计算”涵盖经由数学表达式/公式/关系进行的‘直接’计算和经由查找表或散列表以及其他数组索引或搜索操作进行的‘间接’计算两者。
[0014] “机器”可以被理解为包括使用(例如,电)功率来改变其环境、施加力、控制移动和/或执行预期动作的任何类型的机械结构,例如,可由计算机编程的机械结构。作为示例,机器可以是具有内燃机、反作用式引擎、电驱动对象、混合驱动对象或其组合的被驾驶对象。机器可以是或可以包括人形机器、非人形机器、农业机器、机床、移动机器、静止机器、无人机、工业机器、医疗操作机器、集体操作机器、地面机器、空中机器、水域机器或其混合,等等。
[0015] “地面机器”可理解为包括被配置成(在建筑物内、作为生产线的一部分、在街道上、在道路上、在轨道上、越野等)用于横穿坚实的地面的如上文所述的任何类型的机器。空中机器可以理解为包括被配置成自己升起(例如,飞行或盘旋)的如上所述的任何类型的机器。
[0016] “水域机器”可以被理解为包括任何类型的机器,这些机器被配置成用于在水面之上或水线之下行进。它可以漂浮,作为潜水器或像水翼船那样在水面上行进。
[0017] 本文中使用的术语“自动化机器”(也被称为至少部分自主的机器或被称为机器人)可以描述能够至少部分地在没有人类干预、输入和/或控制的情况下管理一个或多个任务(也被称为任务执行)的机器。自动化机器的示例可以包括混合机器、人类辅助机器、和/或自主机器。本文中使用的术语“自主机器”(也被称为自主机器人)可以描述能够在没有人类干预、输入和/或控制的情况下管理一个或多个任务(也被称为任务执行)的(例如,自动化)机器。管理任务的示例性组件可包括:管理一个或多个物理任务(也称为任务管理)、规划任务执行、组织任务执行、调度任务执行、在两个任务之间进行切换、竞争一个或多个任务、分配一个或多个任务、完成一个或多个任务、报告与一个或多个任务的完成有关的情况、(例如,在多个自主机器之间)协商一个或多个任务的分配、监测一个或多个任务的进度、将自主机器导航到一个或多个任务的一个或多个位置(例如,在该一个或多个任务需要物理操纵的位置),等等。
[0018] 本文对机器人或自动化机器的引用可以被理解为示例性的,并且可以类比地适用于任何类型的自主机器,反之亦然。本文关于一个或多个自主机器所作的引用可类比地适用于一个或多个自动化机器。根据各个方面,例如,当多个机器人被分配到一个或多个任务时,任务管理可以是协作式的。实现协作式任务管理的机器人可以被配置成用于交换与任务管理相关的数据。
[0019] 任务执行可以包括(例如,通过向工件添加材料、从工件移除材料、改造工件等)处理一个或多个工件。自主机器可以实现一个或多个任务执行模型,例如,自主机器的相应控制器可以实现一个或多个任务执行模型。任务执行模型可被配置成用于基于输入数据来控制自主机器的任务执行,以例如将输入数据转换为控制指令。控制器可被配置成用于例如根据机内通信协议(例如,现场总线通信协议)在自主机器内传送控制指令,和/或将控制指令传送到自主机器的一个或多个致动器。一般而言,任务执行模型可以(例如,至少部分地)基于规则和/或可以(例如,至少部分地)基于机器学习。
[0020] 输入数据的示例可以包括:自主机器的一个或多个传感器感测的数据、自主机器存储(例如,在数据库中)的数据、指示被提供给自主机器的指令的数据(例如,操作者或组领导方接收到的数据)、与自主机器与组的从属关系(也称为组从属关系)有关的数据、与自主机器到组的一个或多个任务的分配有关的数据、多个自主机器之间交换的数据(例如,从组的另一个自主机器传送的数据)和/或与任务有关的数据(也称为任务数据)。控制指令可以理解为用于控制自主机器的一个或多个致动器的机器内指令。自主机器的一个或多个致动器的示例可以包括:被配置成用于使自主机器运动的一个或多个致动器,被配置成用于使自主机器的工具致动的一个或多个致动器,被配置成用于移动自主机器的工具(也被称为执行器)(例如,相对于被配置成用于使自主机器运动的一个或多个致动器位移)的一个或多个致动器,作为自主机器的动力学链(例如机械臂)的一部分的一个或多个致动器。
[0021] 例如,任务执行可以基于感测到的数据(也被称为感测结果、传感器数据或被称为感测数据),例如,由自主机器的一个或多个传感器的测量,或由自主机器外部的一个或多个传感器(例如,另一个自主机器的一个或多个传感器)的测量。例如,任务执行可以基于与自主机器的环境有关的信息,例如,自主机器的一个或多个传感器感测到的信息或一个或多个外部传感器感测到的信息。替代地,任务执行可以基于自主机器执行的一个或多个任务的进度。例如,自主机器的一个或多个传感器或一个或多个外部传感器可以被配置成用于感测执行自主机器执行的一个或多个任务的进度。例如,任务执行可以包括根据机器在其中执行一个或多个任务的一个或多个位置对机器进行导航。
[0022] 执行一个或多个任务可以包括自主机器的一个或多个动作,例如,一个或多个空间分布的动作(例如,空间的动作序列)和/或一个或多个空间按时间顺序的动作(例如,按时间顺序的动作序列)。多个动作(也被称为机器动作)的空间分布可以指示,自主机器在哪里(即,与其的空间关系)和/或在哪个方向提供一个或多个动作,即自主机器或其工具位于哪个对应的空间位置(即位置和/或取向)。
[0023] 一项或多项任务可由数据(也称为任务数据)(例如,逻辑上)表示。任务可以指一个任务或一组多个任务,这些任务彼此相关,例如,情境或逻辑上彼此相关(例如,针对制造某个产品的任务、针对探索某个地方的任务,等等)。任务数据可以是任务的正式表示。任务数据的示例可以包括:标识每个任务的数据(也被称为任务标识符)、组织每个任务的数据(例如,空间和/或时间顺序数据)、指示完成任务的标准的数据、指示每个任务的目标的数据、标识用于触发、终止或维持任务的标准的数据等。
[0024] 此外,任务数据可以包括任务逻辑,任务逻辑在逻辑上链接任务、优先级、标准、条件和/或任务逻辑实现了根据其来执行任务的序列(例如流程图)。例如,任务逻辑可以分层地将任务组织成例如分层级别、分层组、子任务等。例如,任务可以包括较低分层级别上的多个子任务,这些子任务可以是,但不需要是经排定优先级的、基于情境的和/或有条件的。从子任务的分层级别上看,子任务也可以被称为任务,并且可以包括但不需要包括多个子任务。例如,任务逻辑可以根据条件方面和/或情境方面来组织任务。例如,任务逻辑可以例如,通过定义用于开始任务执行和/或用于结束任务执行所要满足的条件/要求来定义条件任务。
[0025] 本文中的术语“协作(collaborate)”、“协作式(collaborative)”、“协作(collaboration)”是指例如参与完成任务的实体(诸如设备(多个自主机器))、方法和功能。协作式实体的示例可以包括各种类型的代理或行为者,诸如自动化机器(例如,部分或完全自主机器)、人类、非自动化机器、或非自主机器。参与任务的多个实体(例如,自主机器)可以从属于(例如,被分配)某个组(在本文中也被称为组、机群或被称为团队),例如,作为该组的成员(也称为代理或称为节点)。参与任务的多个自主机器可以从属于(例如,被分配)某个组(在本文中也被称为组、机群或被称为团队),例如,作为该组自主机器中的成员(也称为代理或称为节点)。每个组(例如,每组自主机器)可以被委托一个或多个任务。
[0026] 本文关于一组自主机器作出的引用可类比地适用于一组实体,例如,包括各种类型的代理或行为者,诸如自动化机器(例如,部分或完全自主机器)、人类、非自动化机器、或非自主机器。自主机器可以被配置成用于例如,通过实现一个或多个协议(也被称为协作协议)与一个或多个其他自主机器进行协作。协作协议的示例可以包括:用于组管理的协议(也称为群组管理协议)、用于协作的自主机器组的成员之间的通信(例如,数据交换)的协议(也称为群组通信协议)、用于管理任务的任务的协议(也称为任务管理协议)。
[0027] 一般而言,协议可以定义指示信息(例如,信息传输(例如,交换)、信息存储、信息处理等)的格式、语法、语义和/或同步的规则。例如,自主机器可以根据群组管理协议形成、加入和/或离开组。例如,自主机器可以被配置成用于根据群组通信协议与组的其他成员通信。例如,自主机器可被配置成用于根据群组通信协议(也称为数据交换协议)与组的其他成员交换感测到的数据或交换模型数据。例如,用于将根据群组通信协议生成的消息路由到组的组标识符。
[0028] 自动化机器可以被配置成用于向组的所有成员广播消息,和/或成员标识符或局部过滤器可以将消息路由到组的单个成员。例如,自主机器可以被配置成用于根据任务管理协议管理任务执行,例如,同步任务数据和/或任务的一个或多个任务的状态(例如,进度和/或完成)。
[0029] 术语“目标信息”可以指示与环境属性有关的相应的感兴趣的信息。目标信息可以包括与传感器的环境有关的各种类型的信息,这些信息基于传感器执行的感测过程(例如,其结果)。根据各方面,目标信息可包括与传感器的环境的一个或多个逻辑、几何、运动、机械、辐射测量(例如,光度测量)、热力学、电学和/或化学属性有关的信息,这些信息基于传感器执行的感测过程(例如,基于其结果)。这由目标信息的类型反映,该类型可以是逻辑类型、几何类型、运动类型、机械类型、辐射测量类型(例如光度测量类型)、热力学类型、电学类型和/或化学类型。
[0030] 关于感测过程的术语“结果”(也被称为感测结果或作为感测过程的结果)可以指感测链处理的数据的中间阶段和/或作为处理链输出的目标信息。感测结果的示例可以包括:传感器原始数据、原始数据的聚合、预处理(例如,经过滤的和/或经转换的)的原始数据、处理传感器原始数据的经量化的结果(例如,包括与被感测的属性有关的数字信息(例如,被感测的属性的一个或多个值))、处理传感器原始数据的经分类的结果、基于原始数据(例如,模型的输出)做出的估计,等等。作为感测过程的图像采集的结果的示例,可以包括像素原始数据、基于原始数据的图像数据、视频、基于图像数据的对象识别的结果、光谱组成、光强度值、基于图像数据确定的距离等。
[0031] 本文中的各个方面可利用一个或多个机器学习模型来执行或控制机器的功能(或本文中所描述的其他功能)。本文中所使用的术语“模型”可被理解为基于被提供给模型的输入数据来提供输出数据的任何种类的算法(例如,基于输入数据生成或计算输出数据的任何种类的算法)。计算系统可执行机器学习模型来渐进地改善特定任务的性能。在一些方面中,可在训练阶段期间基于训练数据来调整机器学习模型的参数。可在推断阶段期间使用经训练的机器学习模型基于输入数据来作出估计或决策。在一些方面中,可使用经训练的机器学习模型来生成附加训练数据。可在第二训练阶段期间基于所生成的附加训练数据来调整附加机器学习模型。可在推断阶段期间使用经训练的附加机器学习模型基于输入数据来作出估计或决策。
[0032] 本文中所描述的机器学习模型可采取任何合适的形式或利用任何合适的技术(例如,以用于训练目的)。例如,这些机器学习模型中的任何机器学习模型均可利用监督式学习、半监督式学习、无监督式学习、或强化学习技术。
[0033] 在监督式学习中,可使用训练数据集来建立模型,该训练数据集既包括输入又包括对应的期望输出(说明性地,每个输入可与针对该输入的期望或预期输出相关联)。每个训练实例可包括一个或多个输入并且包括期望输出。训练可包括通过训练实例迭代以及使用目标函数来教导模型估计针对新的输入的输出(说明性地,对于训练集中不包括的输入)。在半监督式学习中,训练集中的输入中的部分可能缺少相应的期望输出(例如,一个或多个输入可能不与任何期望或预期的输出相关联)。
[0034] 在无监督式学习中,可从仅包括输入而不包括期望输出的训练数据集来建立模型。无监督式模型可用于说明性地通过发现数据中的模式而找到该数据中的结构(例如,对数据点的分组或聚类)。可在无监督式学习模型中实现的技术可包括例如自组织图、最近邻映射、k均值聚类、以及奇异值分解。
[0035] 强化学习模型可以包括正反馈(也被称为奖励)或负反馈,以改善准确性。强化学习模型可尝试使一个或多个目标/回报最大化。可在强化学习模型中实现的技术可包括例如Q学习、时间差(TD)和深度对抗网络。
[0036] 本文中所描述的各个方面可利用一个或多个分类模型。在分类模型中,输出可限于值的有限集合(例如,一个或多个类)。分类模型可输出针对具有一个或多个输入值的输入集合的类。输入集合可包括传感器数据,诸如图像数据、雷达数据、LIDAR数据等等。本文所描述的分类模型可以,例如对环境状况(诸如天气状况等)进行分类。本文中对分类模型的引用可构想实现例如下列技术中的任何一种或多种技术的模型:线性分类器(例如,逻辑回归或朴素贝叶斯分类器)、支持向量机、决策树、提升树、随机森林、神经网络或最近邻。
[0037] 本文中所描述的各方面可利用一个或多个回归模型。回归模型可基于具有一个或多个值的输入集合(说明性地,从具有一个或多个值的输入集合开始或使用具有一个或多个值的输入集合)输出连续范围中的数字值。本文中对回归模型的引用可设想实现例如下列技术(或其他合适技术)中的任何一种或多种技术的模型:线性回归、决策树、随机森林、或神经网络。
[0038] 本文中所描述的机器学习模型可以是或可包括神经网络。神经网络可以是任何种类的神经网络,诸如卷积神经网络、自编码器网络、变分自编码器网络、稀疏自编码器网络、循环神经网络、去卷积网络、生成性对抗网络,前瞻性神经网络、和积神经网络等等。神经网络可包括任何数量的层。对神经网络的训练(例如,调整神经网络的层)可使用或可基于任何种类的训练原理,诸如反向传播(例如,使用反向传播算法)。
[0039] 例如,自主机器的控制器可以被配置成用于基于训练数据来训练任务执行模型。训练数据可以包括控制指令、任务执行的结果(也被称为实际结果)和/或预定义的结果(也被称为预期结果或目标结果)。例如,控制器可以被配置成用于通过感测机器的环境来确定任务执行的结果。例如,预定义的结果可以表示最优结果或可接受的结果范围。更一般而言,训练数据可以例如通过将实际结果与预定义的结果进行比较来指示任务执行的结果是否满足预定义的标准。例如,当实际结果与预定义结果的偏差为零时,该标准可被满足。
[0040] 一般而言,实际结果和/或预定义结果可以被参数化,例如,由包括一个或多个参数的数据(也被称为结果数据)表示为与结果有关的信息。例如,结果数据可包括感测到的参数,诸如结果的物理特性、电学特性和/或化学特性。
[0041] 贯穿本公开,下列术语可作为同义词来使用:参数集,模型参数集,安全层参数集,自动化运动模型参数集,和/或类似术语。这些术语可与用于实现引导自主机器根据本文中所描述的方式来操作的一个或多个模型的各组值对应。
[0042] 此外,贯穿本公开,下列术语可作为同义词来使用:参数、模型参数、安全层参数、和/或自动化移动模型参数、和/或类似术语,并且可与先前所描述的集合内的特定值相对应。
[0043] 本文详述的各方面提供了用于自主机器的稳健的协作式感测和自我评定,该协作式感测和自我评定改善了传感故障的确定和/或处置,减少了用于确定和/或处置传感故障的工作量,以及减少了自主机器由于传感故障而停机的时间。
[0044] 图1示出根据本公开的各个方面100的自主机器150的示例。在一些方面,机器150可以包括一个或多个处理器102;一个或多个传感器104;一个或多个执行器114;一个或多个动力链116(例如,持握执行器);一个或多个推进设备118;和/或一个或多个通信设备120。
[0045] 传感器(也被称为检测器)可以被理解为被配置成用于定性或定量地感测其与传感器类型相对应的环境的属性(也被称为环境属性)(例如,几何、运动、机械、辐射度测量(例如,光度测量)、热力学、电和/或化学属性)的换能器。所感测的量是物理量,使用传感器的感测过程是针对该物理量的。取决于要被感测的传感器的环境的复杂性,传感器可以被配置成用于仅在被感测的量的两种状态之间进行区分,或用于在被感测的量的多于两种的状态之间进行区分。传感器可以是特定处理链(也被称为感测链)的一部分,该特定处理链包括对应的基础设施(例如,包括处理器、存储介质和/或总线系统等等)。
[0046] 感测链可以被配置成用于操作对应的传感器(例如,水传感器、压力传感器和/或致动传感器),以将其所感测的量作为输入进行处理并且将表示输入的目标信息作为输出提供。根据各个方面,一个或多个处理器102(例如,作为控制器的组件)可以被配置成用于实现感测链的至少一部分。应注意,感测链可以任选地包括例如基于网络的感测链的各个节点之间的(例如,无线和/或有线)数据交换。例如,感测链可以被配置成用于经由电信号(也被称为传感器信号)输出感测结果或将感测结果(例如,无线地和/或经由有线)传递给感测链的另一组件或传递给(例如,进一步的自主机器的)进一步的通信设备。
[0047] 根据各方面,感测结果(也被称为传感器数据)可以包括传感器原始数据、与所感测的属性有关的经量化的信息(例如,所感测的属性的一个或多个值),或处理与所感测的属性有关的信息和/或传感器原始数据的结果。例如,作为示例性感测过程的图像采集的结果可以包括:像素原始数据、基于原始数据的图像数据、基于图像数据的对象识别的结果、光谱组成、光强度值、基于图像数据确定的距离等。感测过程的结果可以包括与传感器的环境有关的各种类型的信息,这些信息基于传感器可执行的感测过程。根据各个方面,感测过程的结果可包括与传感器的环境的一个或多个逻辑、几何、运动、机械、辐射度测量(例如,光度测量)、热力学、电和/或化学属性有关的信息,这些信息基于传感器可执行的感测过程来被确定。类似地,信息的类型可以是逻辑类型、几何类型、运动类型、机械类型、辐射度测量类型(例如,光度测量类型)、热力学类型、电学类型和/或化学类型。
[0048] 根据各方面,感测链(例如,一个或多个处理器102)可以被配置成用于通过感测各种环境属性来获得相同的感测结果和/或各种传感器可以被配置成用于获得相同的感测结果。例如,感测链(例如,一个或多个处理器102)可以被配置成用于基于雷达传感器、LIDAR传感器,或者还通过处理来自相机的图像数据(例如,立体图像数据),确定自主机器离对象的距离。例如,感测链(例如,一个或多个处理器102)可以被配置成用于基于电阻温度传感器或基于辐射度测量传感器(例如,基于辐射度测量传感器所感测到的光谱组成)来确定温度。
[0049] 一般来说,每个传感器104可以被配置成用于感测实际状况(也被称为实际状态),例如,感测过程的某时间点的状况。一个或多个传感器104的示例可以被配置成用于感测机器150的实际状况(也被称为操作状况),其中一个或多个传感器104的其他示例可以被配置成用于感测机器150的环境(例如,一个或多个传感器104被暴露于该环境中)的实际状况(也被称为环境状况)。
[0050] 感测机器150的实际状况的示例可以包括:感测机器150的温度,感测执行器的位置,感测动力链116的一个或多个节点的位置,感测机器150的位置和/或取向,感测机器的速度,感测执行器的操作和/或状态(例如,感测执行器可能生成的力),感测执行器可能生成的流体流动(生成执行器可能生成的电功率输出)。感测机器150的环境状况的示例可以包括:感测机器150附近的对象(例如,对象的一个或多个属性);感测任务执行的进度;感测机器150附近的辐射(例如,电磁辐射或粒子辐射);感测声音/声学。该对象的示例可以包括:机器150可以处理的工件、人、另一台机器;流体、气体、固体。对象的属性的示例可以包括:对象离机器的距离;对象的位置;对象的温度;对象的纹理;对象的化学成分;对象的运动;等等。
[0051] 一个或多个传感器104的示例包括一个或多个光电传感器105(例如,提供一个或多个图像采集设备)、一个或多个位置传感器106、一个或多个速度传感器、一个或多个距离传感器108(例如,一个或多个雷达传感器和/或一个或多个LIDAR传感器)、一个或多个温度传感器110、一个或多个力传感器112。
[0052] 一个或多个推进设备118的示例可以包括一个或多个地面推进设备118、一个或多个水推进设备118和/或一个或多个空气推进设备118。推进设备118的示例性组件可以包括一个或多个电机;一个或多个滚筒;一个或多个轮胎;一个或多个连续轨道;一个或多个螺旋桨;等等。通信设备120的示例性组件可以包括一个或多个(例如,无线和/或有线)收发器208、210、212;一个或多个天线(也被称为天线系统);一个或多个放大器、一个或多个过滤器、一个或多个调制器、一个或多个解调器、一个或多个基带处理器、一个或多个信号处理器、一个或多个存储器。
[0053] 任选地,自主机器150的一个或多个组件可以被配置成可替换的(也被称为可替换的组件)。自主机器可以被配置成用于取消安装可替换的组件并安装进一步的可替换的组件来代替被取消安装的组件(也被称为自我更换过程)。例如,自主机器150的至少一个执行器可以被配置成可替换组件。在该情况下,保持执行器的动力链116可以被配置成用于释放(例如,取消安装)执行器并安装另一个执行器(也被称为更换工具)。
[0054] 如下面更详细地概述的,一个或多个处理器102可以被配置成用于根据(例如,无线和/或有线)通信协议来生成一个或多个消息,并将生成的一个或多个消息提供给一个或多个通信设备120。一个或多个通信设备120可以被配置成用于根据(例如,无线和/或有线)通信协议发送该一个或多个消息。类似地,一个或多个通信设备120可以被配置成用于根据(例如,无线和/或有线)通信协议接收一个或多个消息,并将所接收的一个或多个消息提供给一个或多个处理器102。一个或多个处理器102可以被配置成用于处理该一个或多个消息。
[0055] 在一些方面,机器150可以包括控制系统251(如下文参考图2所描述)。应领会,机器150和控制系统251本质上是示例性的,并且因此可出于解释的目的而被简化。要素的位置和关系距离(如上文所讨论的,这些图并未按比例绘制)是作为示例而提供,并不限于此。取决于特定实现方式的要求,控制系统251可以包括各种组件。
[0056] 图2示出根据本公开的各个方面200的机器的各种示例性电子组件,即控制系统251。在一些方面,控制系统251可包括一个或多个处理器102、一个或多个图像采集设备105(例如,一个或多个相机)、一个或多个位置传感器106(例如,全球导航卫星系统(GNSS)、全球定位系统(GPS)等)、一个或多个距离传感器108(例如,一个或多个雷达传感器和/或一个或多个LIDAR传感器)、一个或多个温度传感器110、一个或多个力传感器112。根据至少一个方面,控制系统251可以进一步包括一个或多个存储器202、一个或多个地图数据库204a、一个或多个任务数据库204b、一个或多个模型204c、一个或多个输入/输出接口206(例如,用户界面)、和/或一个或多个(例如,无线和/或有线)收发器208、210、212。一个或多个输入/输出接口206的示例性组件包括一个或多个显示器、一个或多个触摸屏、一个或多个麦克风、一个或多个扬声器、一个或多个按钮和/或开关等。
[0057] 在一些方面,(例如,无线和/或有线)收发器208、210、212可以根据相同、不同的无线电通信协议或标准或其任何组合来配置。作为示例,(例如,无线和/或有线)收发器(例如,第一无线收发器208)可以根据短程移动无线电通信标准(诸如,蓝牙、Zigbee等)来进行配置。作为另一示例,(例如,无线和/或有线)收发器(例如,第二无线收发器210)可以根据中程或宽程移动无线电通信标准(例如,根据对应的多个3GPP(第三代合作伙伴计划)标准的3G(例如,通用移动通信系统(UMTS))、4G(例如,长期演进(LTE)、和/或5G移动无线电通信标准)来进行配置。作为进一步的示例,(例如,无线和/或有线)收发器(例如,第三无线收发器212)可以根据无线局域网通信协议或标准(例如,IEEE 802.11、802.11、802.11a、802.11b、802.11g、802.11n、802.11p、802.11‑12、802.11ac、802.11ad、802.11ah等)进行配置。一个或多个(例如,无线和/或有线)收发器208、210、212可以被配置成用于通过空中接口经由天线系统传送信号。
[0058] 在一些方面,一个或多个处理器102可以包括应用处理器214、图像处理器216、通信处理器218、信号处理器、和/或任何其他合适的处理设备。取决于特定应用的要求,(多个)图像采集设备105可包括任何数量的图像采集设备和组件。图像采集设备105可包括一个或多个图像捕捉设备(例如,相机、CCD(电荷耦合器件)、或任何其他类型的图像传感器)。
[0059] 在至少一个方面,控制系统251也可以包括将一个或多个处理器102通信地连接到控制系统251的其他组件的一个或多个数据接口。例如,该一个或多个数据接口可以被配置成用于根据现场总线通信协议或另一个机内通信协议交换数据。例如,一个或多个数据接口可以包括第一数据接口,例如,包括被配置成用于将一个或多个图像采集设备105采集的图像数据传送到一个或多个处理器102(例如,传送到图像处理器216)的任何有线的第一链路220和/或(例如,无线和/或有线)的第一链路220。例如,一个或多个数据接口可以包括第二数据接口,例如,包括被配置成用于将(例如,无线和/或有线)收发器208、210、212可以获取的无线电传送的数据传送到一个或多个处理器102(例如,传送到通信处理器218)的任何有线的第二链路222和/或(例如,无线和/或有线)的第二链路222。例如,一个或多个数据接口可以包括第三数据接口224,例如,包括耦合到一个或多个位置传感器106和/或与一个或多个距离传感器108和/或与一个或多个温度传感器110和/或与一个或多个力传感器112的任何有线的第三链路224和/或(例如,无线和/或有线)的第三链路224。
[0060] 此类数据传输(例如,交换)还可以包括机器150与机器150的环境中的一个或多个其他(目标)机器之间的(例如单向或双向)通信(例如,以促进机器150鉴于在机器150的环境中的其他(目标)机器或与其他(目标)机器一起进行的任务执行(例如,包括导航)的协调),或者甚至包括向正在传送的机器150的附近区域中的未指定接收者进行的广播传送。
[0061] 收发器208、210、212中的一者或多者可以被配置成用于实现群组通信协议(例如,包括数据交换协议(例如,无线数据交换协议和/或有线数据交换协议)),以及任选的一个或多个其他通信协议。在一些方面,群组通信协议可以包括专有(例如,无线和/或有线)通信协议,或者可以是专有(例如,无线和/或有线)通信协议。在一些方面,群组通信协议可以是应用层协议,例如,定义根据(例如,无线和/或有线)通信协议生成的消息的加载部分的格式、语法和/或语义。
[0062] 一个或多个处理器102中的每个处理器214、216、218可包括各种类型的基于硬件的处理设备。每个处理器214、216、218的示例性组件可以包括:微处理器、预处理器(诸如图像预处理器)、图形处理器、中央处理单元(CPU)、支持电路、数字信号处理器、集成电路、存储器,或适合用于运行应用以及用于传感器数据处理和分析的任何其他类型的设备。在一些方面,每个处理器214、216、218可包括任何类型的单核或多核处理器、移动设备微控制器、中央处理单元等。这些处理器类型可各自包括具有本地存储器和指令集的多个处理单元。此类处理器可包括用于从多个图像传感器接收图像数据的视频输入,并且还可包括视频输出能力。
[0063] 本文中所公开的处理器214、216、218中的任一者可被配置成用于根据可被存储在一个或多个存储器202中的一个存储器中的程序指令来执行某些功能。换句话说,一个或多个存储器202中的存储器可以存储在处理器(例如,一个或多个处理器102)执行时控制系统(例如,控制系统251)的操作的软件。例如,一个或多个存储器202中的存储器可存储一个或多个数据库和图像处理软件、以及经训练的系统(诸如,神经网络、或深度神经网络)。一个或多个存储器202可包括任何数量的随机存取存储器、只读存储器、闪存、盘驱动器、光存储、磁带存储、可移动存储、以及其他类型的存储。
[0064] 在一些方面,控制系统251可进一步包括诸如用于测量机器150的速度的速度传感器(例如,速度计)之类的组件。控制系统还可包括用于测量机器150沿一个或多个轴线的加速度的一个或多个(单轴或多轴)加速度计(未示出)。控制系统251可进一步包括附加传感器或不同的传感器类型,诸如超声波传感器、热传感器、一个或多个雷达传感器110、一个或多个LIDAR传感器112(其可集成在机器150的前灯中)等等。
[0065] 一个或多个存储器202可将数据存储在例如数据库中或以任何不同格式存储数据。一个或多个处理器102可以被配置成用于处理机器150的环境的传感信息(也被称为传感器数据)(诸如图像、雷达信号、来自对两个或更多个图像的LIDAR、温度值或立体处理的深度信息)以及位置信息(诸如GPS坐标、机器的自我运动等),以确定机器150相对于已知地标的当前位置,并细化对机器的位置的确定。该技术的某些方面可以被包括在定位技术(诸如映射和路由模型)中。
[0066] 地图数据库204可包括存储用于机器150(例如,用于控制系统251)的(数字)地图数据的任何类型的数据库。地图数据库204可以包括与各种(例如,室外或室内)项目(包括道路、建筑物、墙壁、地形特征(例如,楼梯)、地理特征、房间、感兴趣的地点、任务的空间信息、码头等)在参考坐标系中的位置相关的数据。在一些方面,一个或多个处理器102中的处理器可以通过至通信网络(例如,通过蜂窝网络和/或互联网等)的(例如,有线或无线)数据连接下载地图数据库204的(例如,部分或全部)信息。在一些方面,一个或多个处理器102中的处理器可以被配置成用于例如基于由一个或多个传感器104感测环境状况来确定(例如形成和/或更新)地图数据库204的(例如,部分或全部)信息。在一些方面,地图数据库204可以存储包括机器150的环境的多项式表示的稀疏数据模型。
[0067] 在一些方面,控制系统251可以包括任务数据库。任务数据库的示例性组件可以包括任务数据、任务列表、任务状态、任务分配、实现参数、目标结果等。说明性地,任务数据库可以提供和/或存储与团队的任务有关的信息,机器150从属于该团队。任务数据库的一些信息(例如,一些任务数据)可以被提供给机器150,例如,团队的一个或多个其他成员和/或中央任务控制机构可以提供任务数据库的信息。机器150可以将任务数据库的一些信息(例如,一些任务数据)提供给例如团队的一个或多个其他成员和/或提供给中央任务控制机构。机器150可以例如根据任务的状态和/或基于机器150的感测结果来更新和/或形成任务数据库的一些信息(例如,一些任务数据)。
[0068] 此外,控制系统251可以包括任务执行模型204b,例如,自动化系统可以实现任务执行模型204b。作为示例,控制系统251可以包括(例如,作为任务执行模型的部分的)机器或其环境的正式模型的计算机实现。作为示例,控制系统251可以包括(例如,作为任务执行模型的一部分)安全性性能模型、任务解释模型和/或机器控制模型。任务执行模型可以是或可包括对适用于自主机器的适用任务性能策略、安全性策略、操作策略、任务数据等的解释进行形式化的数学模型。应注意,任务执行模型的详细组件中的一个或多个组件可以被单片式地实现或彼此分开地实现(例如,由一个或多个处理器可以执行的单独的应用实现)。
[0069] 例如,安全性性能模型可被配置成用于实现例如三个目标:第一,安全性策略的解释在它符合人类如何解释安全性策略的意义上应该是合理的;第二,解释应该带来有用的任务执行,这意味着它将带来灵活的任务执行而不是过度防御性的任务执行,该过度防御性的任务执行不可避免地会使其他代理(例如,人类和/或机器)感到迷惑并将阻碍完成任务,并且进而限制系统部署的可扩展性;以及第三,在可以严格地证明自主机器正确地实现该安全性策略的解释的意义上,解释应当是高效地可验证的。说明性地,安全性性能模型可以是或可包括用于安全性保障的数学模型,该数学模型实现对危险情况的恰当响应的标识和执行,使得可以避免自身导致的事故。
[0070] 例如,任务解释模型可以被配置成用于例如基于与分配给机器的任务的一个或多个任务有关的信息和/或基于目标性能来确定机器可执行的执行步骤的正式公式。该转换可被配置成用于得到有效的任务执行和结果(例如,完成任务),该结果尽可能地满足目标性能。
[0071] 例如,机器控制模型可以被配置成用于例如基于执行步骤和/或机器和/或其环境的模型来确定机器可以采取的得到有用的任务执行的有用动作。例如,机器控制模型可以基于机器的动力链的模型、机器的可用执行器、机器的可到达位置等来生成控制指令。
[0072] 控制系统251可以生成数据来控制或辅助控制引擎控制单元(ECU)和/或机器150的其他组件,以直接地或间接地控制对机器150的驱动。
[0073] 在一些方面,控制系统251可以包括被配置成用于驱动自主机器的一个或多个致动器(例如自主机器150的动力链的一个或多个致动器和/或一个或多个推进设备118的一个或多个致动器)的驱动设备240。例如,驱动设备240可以包括一个或多个放大器240a和/或一个或多个能量储存设备240b。能量储存设备240b的示例可以包括能够(以某种形式(例如,诸如电、磁、化学等))储存能量并将所储存的能量转换为电功率的任何储存设备。放大器240a的示例可以包括基于电源并基于从一个或多个处理器102接收到的控制信号来提供一个或多个致动器的操作电压的任何电压到电压转换器。
[0074] 如上文所描述,机器150可包括控制系统251,还参考图2来描述该控制系统251。
[0075] 机器150可包括例如与机器150的引擎控制单元(ECU)集成或分离的一个或多个处理器102。
[0076] 一般而言,控制系统251可生成数据来控制或辅助控制ECU和/或机器150的其他组件,以直接地或间接地控制对机器150的驱动。
[0077] 虽然下列各方面将与上述详细模型相关联地描述,但在替代实现方式中可提供任何其他模型。
[0078] 图3和图4示出了自主机器150的进一步示例。图3示出了根据本公开的各方面300的(例如,根据方面100或200进行配置的)自主机器150的进一步示例。例如,自主机器150可以包括一个或多个处理器102(未示出);一个或多个传感器104;一个或多个执行器114;一个或多个动力链116(例如,持握执行器);和/或一个或多个通信设备120。机器150可以是固定的并且包括作为执行器114的焊接设备314。
[0079] 图4示出了根据本公开的各方面400的(例如,根据方面100或200进行配置的)自主机器150的进一步示例。自主机器150可以包括一个或多个处理器102(未示出);一个或多个传感器104;一个或多个执行器114;一个或多个动力链116(例如,持握执行器);和/或一个或多个通信设备120。机器150可以是固定的并且包括作为执行器114的抓取设备414。
[0080] 在本文中,作出了对例如关于自主机器的各种方法、处理链、操作、计算、逻辑关系、模型和功能的引用。可以理解,所作的引用可以类比地适用于实现方法、处理链、操作、计算、逻辑关系、模型和功能的控制器和/或代码段。
[0081] 图5以示意性通信图示出了根据本公开的各方面500的方法551,该方法可以根据方面100至400进行配置和/或可以由一个或多个自主机器150(即第一自主机器502(也被称为被被监测的机器或被称为被测机器)和/或第二自主机器512(也被称为参考机器)),例如由其一个或多个处理器102和/或由其一个或多个处理器102执行的代码段来实现。
[0082] 方法551包括:在501中,根据(例如,无线和/或有线)通信协议从参考机器512接收消息512r。消息512r(也被称为结果消息)可以包括感测过程512s(也被称为参考感测过程)的结果(也被称为参考结果)。对两个自主机器将一个或多个感测过程的结果作为参考结果进行交换(也称为传感器数据交换)所作的引用可以被理解为类比地适用于多于两个的自主机器。
[0083] 根据各方面,参考机器512可以被配置成用于例如使用参考机器512的一个或多个传感器104中的至少一个传感器(也被称为至少一个参考传感器)执行参考感测过程512s。例如,该至少一个参考传感器可以与被监测的机器502中的至少一个被监测的传感器互补。
[0084] 根据各方面,参考机器512可以被配置成用于根据(例如,无线和/或有线)通信协议生成结果消息512r和/或根据(例如,无线和/或有线)通信协议将结果消息512r传送到例如被监测的机器502。例如,参考机器512可以被配置成用于将结果消息512r寻址到被监测的机器502和/或将结果消息512r广播到例如包括被监测的机器502和/或参考机器512的团队。
[0085] 任选地,结果消息512r可以包括指示参考结果的可靠性的信息(也被称为标志)。例如,参考机器512可以被配置成用于在执行参考感测512s之前执行自我评定(也被称为早期自我评定)。例如,该标志可以基于参考机器512的早期自我评定的结果。
[0086] 该方法551进一步包括:在503中,确定被监测的机器502的评定502a(也被称为自我评定503)。根据各方面,自我评定503可以基于结果消息(例如,基于参考结果并且基于第二感测过程502s(也被称为被监测的感测过程)的结果)(在这种情况下,也被称为基于共享的自我评定503)。被监测的机器502可以被配置成用于例如使用被监测的机器502的一个或多个传感器104中的至少一个传感器(也被称为至少一个被监测的传感器)执行被监测的感测过程。例如,方法551包括:在503中,基于参考结果并且基于被监测的感测过程502s的结果(也称为被监测的结果)来确定被监测的机器502的至少一个被监测的传感器的评定502a。
[0087] 作为对基于共享的自我评定503(例如,基于被监测的结果和参考结果)的附加或替代,自我评定503可以基于评定估计模型520(也被称为基于估计的自我评定503)。评定估计模型520可以被配置成用于基于被监测的机器502的一个或多个实际状况来提供评定502a(也被称为估计的评定,例如,包括所估计的传感器故障或对校准的需求)。一个或多个实际状况的示例可以包括被监测的机器502的一个或多个环境状况(例如,温度、压力等)和/或被监测的机器502的操作状况。例如,评定估计模型520可以被配置成用于基于被监测的机器502的一个或多个环境状况(例如,温度、压力等)和/或被监测的机器502的操作状况来输出估计的评定。说明性地,评定估计模型520可以允许在没有任何其他自主机器的辅助的情况下执行自我评定503。例如,操作状况可以表示执行任务时的状况。例如,环境状况可以表示被监测的机器502被放置于其中的场景。
[0088] 任选地,该方法可以包括:在505中,根据基于共享的自我评定503的结果并且根据被监测的机器502的一个或多个实际状况来更新(例如,训练)或形成评定估计模型520。说明性地,训练评定估计模型520可以改善在没有任何其他自主机器的辅助的情况下执行自我评定503的能力。例如,评定估计模型520不一定是经训练的模型,例如,如果是正式模型。
[0089] 参考感测过程512s和被监测的感测过程502s可以被配置成用于提供相当的结果。根据各方面,参考感测过程512s和测试感测过程502s可以被配置成用于使用相同类型的传感器。根据各方面,参考感测过程512s和测试感测过程502s可以被配置成用于提供相同类型的结果。
[0090] 根据各方面,参考感测过程512s和测试感测过程502s可以被配置成用于例如在相同的附近区域中感测相同的环境属性。例如,参考感测过程512s和测试感测过程502s可以被配置成用于输出与环境属性有关的相同类型的信息。
[0091] 根据各方面,至少一个参考传感器和至少一个被监测的传感器可以被配置成用于感测相同的环境属性。根据其他方面,至少一个参考传感器可以被配置成用于感测第一环境属性,并且至少一个被监测的传感器可以被配置成用于感测与第一环境属性不同的第二环境属性。
[0092] 根据各方面,评定502a可以是被监测的机器502(例如,至少一个被监测的传感器)的评定502a。例如,该方法可以包括确定被监测的机器502的多个评定502a,该多个评定502a中的每个评定与被监测的机器502的另一个传感器相关。评定502a的示例可以包括:健康得分、可靠性评定、置信度评定、信任评定等。例如,可靠性评定可以指示被监测的机器
502(例如,至少一个被监测的传感器)的可靠性。
[0093] 在各个方面,自主机器150执行的感测过程可以是或可以不是无接触的(例如,当感测过程包括自主机器150物理地接触要被感测的(例如,固体)对象时)。例如,感测过程可以包括用于感测由自主机器150所采取的动作的结果,例如,由自主机器150处理对象(例如,工件)的结果。在示例性场景中,被监测的机器502的工具包括用于拧紧对象的螺钉的螺丝刀,并且被监测的结果表示例如在拧紧操作期间螺丝刀传递到螺丝的扭矩。在该示例性场景中,方法551可包括确定包括作为工具的螺丝刀的任何自主机器(例如处于被监测的机器502的附近区域中和/或作为被监测机器502的团队成员)确定为参考机器512。参考感测过程可包括由参考机器512感测被传递到螺丝的扭矩。
[0094] 在更一般的场景中,该方法551包括两个自主机器150(例如当它们是相邻的自主机器150时)可以交换它们的任务和任务执行配置。在该一般的场景中,两个自主机器中的每个自主机器150充当两个自主机器中的另一个自主机器的参考机器512,并生成另一个自主机器的参考结果(说明性地,感测结果被共享回来)。该方法包括将这些参考结果与先前操作的感测结果进行比较,并确定其中的偏差。该方法可以包括基于平均或简单的标志来确定偏差,以确定相应的操作落入最后20个类似操作的一般水平。替代地或附加地,确定偏差可以基于一个或多个其他度量,例如,一般的服务质量、与安全性模型的一致性、或其他不同的评定度量。在该情况下,方法551可以包括将被监测的机器502的传感器和操作确定为工作正常。如果偏差不是可接受的,则方法551可包括将传感器(或潜在的控制器)确定为是有故障的或需要维护(例如,诸如校准)。
[0095] 在说明性示例中,被监测的传感器可能遇到由于以下各项中的一项或多项引起的(例如,动态)感测不确定性:特定的环境状况(例如,超出传感器的工作条件)、环境噪声、校准损失和/或传感器随年龄的降级。自我评定503最小化对单个自主机器的定期预防性维护的要求。说明性地,各个方面基于计及两个或更多个自主机器之间的协作式交互性质以及基础设施与自主机器之间的交互。例如,自我评定503改善了对传感故障的处置。
[0096] 作为优化技术,多个机器可以评定它们所负责的功能的时间关键性,并在本地机器的(工作)组内共享这一点。将这些参数进行比较,机器可以交换位置和功能,以便确保具有必要功能的机器的最优配置相互备份,并且还确保具有时间关键性功能的机器在邻近区域内具有备份机器,以便最小化潜在的安全性或质量问题。这些所学习的配置可以例如使用先前团队成功或失败作为优化的基础成为未来团队在实践中的试探法模型。
[0097] 获得实时环境、材料特性等可能对于执行适当的故障转移以避免任何工厂执行流水线中断是至关重要的。另外,涉及一个或多个自主机器150与其他机器150或与基础设施的交互的传感、功能和/或性能降级问题可能难以经由传统的孤岛式预测性维护捕获。
[0098] 图6以示意性通信图示出了根据本公开的各方面600的方法651,该方法可以根据方面100至500进行配置和/或一个或多个自主机器150(即被监测机器502和/或参考机器512)可以例如由其一个或多个处理器102和/或由其一个或多个处理器102执行的代码段实现该方法。
[0099] 方法651包括:在601中,例如,通过将被监测的感测过程502s的结果与预定义的结果进行比较来确定被监测的机器502的被监测的感测过程502s是否不满足502k(也被称为不确定性确定)。例如,当被监测的感测过程502s的结果满足或接近于预定义的结果时,可靠性标准502k可以被满足。被监测的机器502可以被配置成用于例如使用至少一个被监测的传感器执行被监测的感测过程。例如,预定义的结果可以表示最优结果,或者可以包括可接受的结果的范围。例如,预定义的结果可以由被监测的机器502存储。
[0100] 方法651包括:在603中,当可靠性标准未被满足时,根据(例如,无线和/或有线)通信协议生成到参考机器512的消息522r(也称为请求消息522r)。请求消息522r可以包括将参考结果提供给被监测的机器502的请求(也被称为共享请求)。被监测的机器502可以被配置成用于根据(例如,无线和/或有线)通信协议生成例如到参考机器512的请求消息522r和/或将请求消息522r传送到例如参考机器512。例如,被监测的机器502可以被配置成用于将请求消息522r寻址到参考机器512和/或用于广播请求消息522r。
[0101] 根据各方面,参考机器512可以被配置成用于例如使用至少一个参考传感器和/或响应于接收请求消息522r来执行参考感测过程512s。参考机器512可以被配置成用于根据如上文所详述的(例如,无线和/或有线)通信协议生成结果消息512r。结果消息512r可以包括如上所述的参考感测过程512s的参考结果。
[0102] 图7以示意性通信图示出了根据本公开的各方面700的方法751,该方法可以根据方面100至600进行配置和/或该方法可以由参考机器512(例如由其一个或多个处理器102和/或由其一个或多个处理器102执行的代码段)来实现。可以注意到,提供参考机器512的一个或多个机器可以例如基于一个或多个任务随时间改变。例如,可以选择机器作为参考机器512以保证任务和环境数据两者的相似性。
[0103] 方法651包括,在501中,根据(例如,无线和/或有线)通信协议从被监测的机器502中接收请求消息522r。如上文所详述,请求消息522r可以包括将参考结果提供给被监测的机器502的请求。
[0104] 根据各方面,被监测的机器502可以被配置成用于根据(例如,无线和/或有线)通信协议将请求消息522r传送到例如参考机器512。例如,被监测的机器502可以被配置成用于将请求消息522r寻址到参考机器512和/或用于广播请求消息522r。
[0105] 方法651包括,在601中,根据(例如,无线和/或有线)通信协议生成到被监测的机器502的结果消息512r。如上文所述,结果消息512r可以包括由参考机器512提供的参考结果。任选地,方法751包括:在701中,根据(例如,无线和/或有线)通信协议将结果消息512r传送到例如被监测的机器502。例如,方法751包括:在701处,将结果消息512r寻址到被监测的机器502和/或广播结果消息512r。
[0106] 图8以示意性通信图示出了根据本公开的各方面800的方法851,该方法可以根据方面100至500进行配置和/或该方法可由一个或多个自主机器150(即被监测的机器502和/或参考机器512)(例如由其一个或多个处理器102和/或由其一个或多个处理器102执行的代码段)来实现。方法851可以包括如上文关于方法551、651、751所详述的方面。
[0107] 任选地,方法851包括:在801中,根据(例如,无线和/或有线)通信协议生成消息532a(也被称为评定消息)和/或根据(例如,无线和/或有线)通信协议将消息532a传送到参考机器512。评定消息532a可以包括评定502a。例如,方法851包括:在801处,将结果消息
512r寻址到被监测的机器502和/或广播结果消息512r。
[0108] 可以理解,多于两个的自主机器150可以将感测过程的结果作为参考结果进行交换803(也被称为传感器数据交换803)。
[0109] 图9以示意图示出了根据本公开的各方面900的系统951,该系统可以根据方面100至800进行配置。系统951可以包括被监测的机器502和任选的一个或多个参考机器512,如稍后详述。
[0110] 系统951可以包括群组通信协议901,该群组通信协议901包括传感器共享协议901a和/或传感器发现协议901b(也被称为机器人传感器发现或被称为传感器发现协议)。
传感器共享协议901a可以定义指示经由与一个或多个感测过程(也称为共享)相关的消息(例如,经由结果消息512r和/或请求消息522r(说明性地,包括共享请求))的数据交换的格式、语法、语义和/或同步的规则。
[0111] 传感器发现协议901b可以被配置成用于提供关于团队中的一个或多个可用传感器的信息。传感器发现协议901b可以定义指示经由与共享的准备相关的消息的数据交换(例如,用于传感器发现的数据交换)的格式、语法、语义和/或同步的规则。例如,传感器发现可以包括确定作为团队成员的自主机器150是否包括能够用于确定参考结果的传感器。例如,传感器发现可包括确定作为团队成员的哪个自主机器150包括能够确定参考结果的传感器。例如,被监测的机器502可以被配置成用于根据传感器发现协议901b确定包括被配置成用于确定参考结果(也被称为传感器发现)的传感器的组中的一个或多个成员。
[0112] 群组通信协议901可以由作为包括被监测的机器502和/或一个或多个参考机器512的团队(自主机器的组)的成员的每个自主机器150实现。例如,群组通信协议901可以由其一个或多个处理器102和/或由一个或多个处理器102执行的代码段来实现。
[0113] 一个或多个处理器102可以被配置成用于在(例如,响应于)确定事件(也被称为异常事件或不确定性)时触发(例如,发起)自我评定503。异常事件的示例可以包括:机器异常、组从属关系改变、维护相关事件、环境改变、调度的事件、操作者指令。机器异常(也被称为与自主机器150相关的异常)的示例可以包括:自主机器150(例如,被监测的机器502)的传感器异常,以及自主机器150(例如,被监测的机器502)的操作异常。组从属关系改变的示例可以包括自主机器150(例如,被监测的机器502)加入小组或离开小组。环境改变的示例可以包括自主机器150(例如,被监测的机器502)暴露于其中的一个或多个环境状况(例如,照明、温度、气压)的改变。
[0114] 一个或多个处理器102可以被配置成用于在自主机器150(例如,被监测的机器502)的传感器提供异常数据或异常行为(例如,提供非预期的数据、高噪音等)时,确定传感器异常。例如,一个或多个处理器102可以被配置成用于基于一个或多个先前任务执行的存储的结果、一个或多个先前感测结果和/或一个或多个模型204c的输出来确定传感器异常。
这也可以类比地适用于操作异常,例如,当自主机器150(例如,被监测的机器502)的操作是异常的或提供异常的结果。
[0115] 维护相关事件可以包括与自主机器150(例如,被监测机器502)的维护相关的时间点,例如,在自主机器150的维护之前和/或之后。例如,与维护相关的时间点和维护被执行的时间之间的时间差可以例如由自主机器150的一个或多个存储器202来存储。
[0116] 一个或多个处理器102可以被配置成用于基于来自操作者设备904的消息902(也被称为操作者消息)获得操作者指令,该操作者消息902包括操作者指令。操作者指令可以包括用于执行自我评定503的指令。例如,操作者设备904可以包括用户接口(例如,人机接口),用户接口例如包括键盘、显示器和/或鼠标,等等。例如,操作者设备904可以被配置成用于由人类操作者(也被称为用户)操作。在各个方面,操作者设备904可以实现中央任务控制机构。在其他示例中,自主机器150可以被配置成用于实现中央任务控制机构。
[0117] 图10以示意图示出了根据本公开的各方面1000的系统951,该系统可以根据方面100至900进行配置。系统951可以包括一组自主机器150(也被称为组或被称为团队),包括被监测的机器502和一个或多个进一步的自主机器1102(例如,包括要被确定的参考机器
512)。根据各方面,团队的所有成员150可以是同一类型的自主机器(也被称为同构团队)。
在其他方面,该团队可以包括在其类型上彼此不同的至少两个自主机器。例如,在其类型上彼此不同的两个自主机器150可以在至少一个传感器(例如,传感器类型,和/或特定类型的传感器的数量)方面和/或它们的工具方面彼此不同。
[0118] 如上文所述,被监测的机器502可以被配置成用于执行自我评定503。自我评定503可以基于经量化的不确定性,并且可以被配置成用于检测和/或估计被监测的机器502的、作为评定502a的一个或多个不可靠的传感器。
[0119] 被监测的机器502(例如,其一个或多个处理器102)和任选的团队的进一步的自主机器1102中的每一者(例如,其一个或多个处理器102)可以被配置成用于实现传感器发现协议901b以将团队的一个或多个进一步的自主机器1102的确定903为参考机器512。
[0120] 被监测的机器502(例如,其一个或多个处理器102)和团队的进一步的自主机器1102中的任选的每一者(例如,其一个或多个处理器102)可以被配置成用于实现传感器共享协议901a(也被称为数据交换协议)以将一个或多个感测结果作为如上文所述的参考结果(也被称为可靠感测数据)进行共享。
[0121] 如上文所述,团队(例如,被监测的机器502和/或参考机器512)的一个或多个成员(例如,每个成员)可以实现评定估计模型520。根据各方面,自主机器的评定估计模型520可以被配置成用于确定自主机器的一个或多个传感器故障。附加地或替代地,自主机器可以被配置成用于例如至少基于操作状况和/或操作状况来更新(例如,训练)或生成评定估计模型520。例如,评定估计模型520不一定是经训练的模型,例如,如果是正式模型。
[0122] 在下文中,出于说明性的目的,将参考系统951的各个示例性方面,并且不旨在是限制性的。所做的例如对具体各方面的引用可以类比地适用于本文详述的方法和处理器。
[0123] 图11以示意图示出了根据本公开的各方面1100的系统951,该系统可以根据方面100至1000进行配置。
[0124] 系统951可以被配置成用于确定自我评定503的量化的不确定性,以检测和/或估计一个或多个不可靠的传感器。系统951可以包括用于找到具有至少一个互补传感器的一个或多个附近的自主机器(例如,机器人)的传感器发现协议901b。系统951可以包括用于共享可靠的感测数据的传感器共享协议901a。
[0125] 系统951可以任选地包括机器人编排图,该机器人编排图可以确保备份系统的最优位置。
[0126] 协作式感测以及自我评定的示例可以包括:不确定任何传感数据的自主代理150(例如,机器)可以请求来自一个或多个受信任的对等方(例如,其他自主机器)的附加数据(也是第二意见)。估计的功能可以包括与一个或多个以下内容有关的估计(例如,回答):我的传感器是良好的吗,它们是准确的和/或可靠的吗?我的传感器是一致的吗?[0127] 被监测的机器502可以被配置成用于将一个或多个请求消息522r(例如,包括SOS消息)发送到一个或多个进一步的自主机器1102(例如,机器人)以提供包括感测结果的数据。任选地,每个自主机器150可以被配置成用于将自主机器150(例如,机器人)的健康得分确定为例如自我评定503的结果。该健康评分可以是任选地情境的。自我评定503可以包括(例如,由多于一个的自主机器)协作地进行三角测量,例如以确定异常事件(说明性地,基本问题)的原因。
[0128] 任选地,被监测的机器502可以被配置成用于将一个或多个进一步的自主机器1102用于错误和决策。自主机器150(例如,机器人)可以被配置成用于将自我更换过程(例如,更换工具)实现为传感器共享协议901a的一部分。
[0129] 系统951可以任选地包括通信回路中的人类/操作者设备904,以用于确定异常事件(说明性地,不确定性)以及用于促进共享感测过程的一个或多个结果。为了确定一个或多个自主机器150(例如,机器人)的不确定性,可以实现以下各项的至少一项(即一项或多项)(例如,取决于场景):由被监测的机器502自主确定不确定性,或者由操作者(例如,人类操作者)例如基于监测传感器、行为或关于任务执行的数据来确定不确定性。任选地,系统可以被配置成用于例如基于以下各项中的一项或多项来对所确定的不确定性进行评分和/或加权:与边缘/服务器的连接质量的状态;自主机器(例如,机器人)自我评估的能力(例如,考虑任务期间的环境、实时决策的需要等);和/或来自附近自主机器的传感器数据质量。
[0130] 根据各方面,系统951可以被配置成用于将与自主机器150的一个或多个传感器104(例如,机器人传感器磨损)有关的信息和/或邻近于彼此进行操作的自主机器150的维护数据进行制表。制表可以提供标识传感器故障的最大可能性的能力。制表的结果(也被称为系统表)可以被传递给机器人编排管理器。
[0131] 机器人编排管理器可被配置成用于在操作时分配或交换一个或多个自主机器150,以确保重复的或最接近的等效执行的传感器(或相应的机器人)处于邻近区域中以增加或替换操作中的故障。例如,具体而言,对于磨损指示高并且处于关键的操作点的传感器(其中延长的延迟可能是昂贵的,影响质量或安全性)而言,这可能是有益的。
[0132] 根据各方面,系统951的多个机器人可以被配置成用于在任务上进行协作时根据群组通信协议交换数据,以例如协调任务执行和/或协调与任务相关的其他信息。根据各方面,群体通信协议可以在数据分组中定义用于触发传感器数据交换803的字段。例如,群组通信协议可以被配置成用于在个别的机器人150上解析数据时(例如,紧接在其之后)触发传感器数据交换803。
[0133] 根据各方面,系统951可以包括团队的至少一个机器人,该至少一个机器人可以根据传感器数据的权重和/或质量(例如,通过确定接收到的消息是否激活了传感器数据交换字段)来促进共享过程。如果机器人和/或机器人上的传感器是异构的,则可以使用附加传感器来覆盖所确定的传感器不确定性。例如,自我评定503可以基于例如由多于一个的参考机器512提供的多于一个的参考结果。
[0134] 如果自我评定503的结果指示传感器故障是由于环境(例如,照明条件或天气)引起的,则被监测的机器502可以向所有机器人1102通知和/或广播消息(例如,警告消息)以传递被监测的机器502的位置,该位置被确定为具有传感器故障和/或传感器故障发生的位置。这使得在被监测的机器502附近区域中的进一步的机器人能够是谨慎的。
[0135] 在各个情况下,一个或多个处理器(例如,通过评定估计模型520)可以被配置(例如,被训练或被生成)用于估计异常事件(例如,传感器故障场景)。在各个场景中,一个或多个处理器(例如,通过安全性性能模型)可以被配置(例如,被训练或被生成)用于例如基于自我评定502的结果(例如,指示传感器)和/或基于相应的估计的异常事件(例如,指示故障情况)来估计要由自主机器150采取的一个或多个预防/缓解动作。
[0136] 在各个情况下,一个或多个处理器可以被配置成用于例如取决于关键性和需要(如果可行的话)(例如,如果关键传感器被估计为出现故障)确定要在机器人150上启用的传感器冗余。
[0137] 系统951可以包括一个或多个服务器1102(例如,云和/或边缘服务器),这些服务器可以与一个或多个自主机器150(例如,参考机器512和/或被监测的机器502)通信和/或可以被配置成用于提供以下功能中的一种或多种:使用平台受信任执行环境(TEE)对所有贡献的代理进行远程证明以及撤销管理,对来自所有上述源的数据进行聚合,
执行数据挖掘,以基于代理彼此之间以及代理与基础设施的协作来确定传感降
级,
通过使众包数据与来自统计上部署的源和反馈的数据相互关联来计及误差裕度,基于反馈来调整数据挖掘逻辑,
例如基于规定的策略向用户提供适当的通知和/或警报,
例如,基于观察到的误差裕度和/或传感降级来提供情境推荐以补偿和/或缓解降级。
[0138] 图12以示意图示出了根据本公开的各方面1200的模块化系统951,例如详述系统951的各个组件(在此称为模块),系统951可以根据方面100至1100进行配置。例如,系统951可以被配置成用于远程证明、来源跟踪和/或奖励(例如,用于训练)。
[0139] 系统951(例如该自主机器150或每个自主机器150)可以包括传感器管理器模块。传感器管理器模块可以被配置成用于控制(例如,指示和/或分发)感测过程和/或自我评定
503。传感器管理器模块可以实现以下各项中的一项或多项:用于标记任何问题并将其存储在数据库中以供未来使用的传感器异常检测;传感器数据抓取和传感器融合能力;通过事件调度代理激活一个或多个事件。
[0140] 系统951(例如该自主机器150或每个自主机器150)可以包括节点智能模块。说明性地,节点智能模块可以提供系统941的大脑。节点智能模块可以被配置成用于提供机器人传感器发现和传感器共享协议的所需智能。节点智能模块可被配置成用于激活通信代理模块以跨各个机器人交换信息。节点智能模块的输出可以帮助驱动致动器以控制预期的操作。
[0141] 系统951(例如该自主机器150或每个自主机器150)可以包括实现安全性模型的安全性模块。从架构的角度,术语安全性模块可以指代安全性模型。安全性模块可以被配置成用于评估一个或多个提出的轨迹和当前的环境状况,以例如基于其他自主机器的行为预测和/或运动属性来确定所提出的轨迹是否应该由自主机器150的致动器实现。例如,安全性模块可以实现安全性性能模型。
[0142] 系统951(例如该自主机器150或每个自主机器150)可以包括一个或多个致动器。该致动器或每个致动器可以被配置成用于例如通过移动和/或机械能量转移来执行自主机器150的物理操作(诸如例如,移动)。
[0143] 系统951(例如该自主机器150或每个自主机器150)可以包括事件调度代理模块。事件调度代理模块可以被配置成用于标识关键事件和/或对其进行调度。例如,事件调度模块可以被配置成用于在(例如,响应于)从传感器管理器接收关于传感器异常的信息(也被称为异常检测)时,调度和/或触发(例如,激活)机器人传感器发现协议。
[0144] 系统951(例如该自主机器150或每个自主机器150)可以包括事件集合模块。事件集合模块可以被配置成用于实现所标识的和所调度的事件的集合。
[0145] 系统951(例如该自主机器150或每个自主机器150)可以包括认证代理模块。认证代理模块可以被配置成用于利用安全引擎来与一个或多个受信任的相邻自主机器以及与许可基础设施一起对自主机器进行认证。
[0146] 系统951(例如该自主机器150或每个自主机器150)可以包括通信代理模块。通信代理模块可以被配置成用于提供与一个或多个进一步的自主机器或与操作者设备的安全通信。
[0147] 系统951可以包括一个或多个用户接口(UI)。例如,用户接口可以包括用于与人类操作者(也称为用户)交互的应用组件接口。
[0148] 系统951(例如,自主机器150或每个自主机器150)可以包括一个或多个通信设备120(也称为Comms)。一个或多个通信设备120可以根据一个或多个通信技术(例如,包括GPS、Wi‑Fi、WiMax、蓝牙等)进行配置。
[0149] 系统951(例如,该自主机器150或每个自主机器150)可以包括一个或多个处理器102(例如,主机CPU)和一个或多个存储器202,以提供自主机器的计算和存储能力。
[0150] 系统951(例如,自主机器150或每个自主机器150)可以包括安全引擎模块(也被称为TEE(受信任执行环境))。安全引擎模块可以包括基于硬件的安全引擎,该安全引擎提供一个或多个加密操作和防篡改安全执行环境。
[0151] 系统951(例如该自主机器150或每个自主机器150)可以包括操作系统(OS)。操作系统(例如,主机操作系统)可以包括管理自主机器150的资源的基于软件的引擎。自主机器150的OS的示例包括机器人操作系统(ROS)。
[0152] 图13以示意图示出了根据本公开的各方面1300在本文中描述的方法的示例性实现方式,该方法可以根据方面100至1200进行配置。
[0153] 图14以示意图示出了根据本公开的各方面1400在本文中描述的方法的示例性实现方式,该方法可以根据方面100至1300进行配置。
[0154] 在下文中,将对本公开的各个方面进行说明:
[0155] 示例1是一种(例如,用于自动化(例如,自主)机器(例如,用于被监测的机器))方法,该方法包括:(例如,由自动化(例如,自主)机器)根据(例如,无线和/或有线)通信协议从进一步的自动化(例如,自主)机器(例如,参考机器)中获得(例如,接收)第一消息,该第一消息包括该进一步的自动化(例如,自主)机器执行的第一感测过程(例如,参考感测过程)的第一结果;(例如,由自动化(例如,自主)机器)基于第一结果并且基于自动化(例如,自主)机器(例如,由自动化(例如,自主)机器的至少一个传感器)执行的第二感测过程的第二结果来确定自动化(例如,自主)机器(例如,其至少一个传感器的)的评定,其中,例如,第二感测过程被配置成用于提供与第一感测过程相同的目标信息(例如,物理量)。
[0156] 示例2是根据示例1的方法,其中,评定的确定基于目标信息的第一确定与目标信息的第二确定的比较,其中,第一确定基于(例如,被提供有)第一结果,其中,第二确定基于(例如,被提供有)第二结果。
[0157] 示例3是根据示例1或示例2的方法,其中,目标信息表示第一自动化(例如,自主)机器的操作状况和/或第一自动化(例如,自主)机器的环境状况。
[0158] 示例4是根据示例2或示例3的方法,其中,评定代表(例如,基于)第一确定与第二确定的偏差。
[0159] 示例5是根据示例1至4中一项的方法,其中,第一消息根据(例如,无线和/或有线)通信协议。
[0160] 示例6是根据示例1至示例5中一项的方法,进一步包括:(例如由自动化(例如,自主)机器)生成对进一步的自动化(例如,自主)机器提供第一结果和/或执行(例如,由传感器共享协议实现的)第一感测过程的请求,其中,例如,该请求包括由第二感测过程提供的目标信息,例如,由第一感测过程感测到的对象。
[0161] 示例7包括根据示例6的方法,进一步包括:例如,(例如由自动化(例如,自主)机器)(例如,根据(例如无线和/或有线的)通信协议)生成包括该请求的第二消息。
[0162] 示例8包括根据示例7的方法,进一步包括:(例如由自动化(例如,自主)机器)(例如,根据(例如无线和/或有线的)通信协议)将第二消息发送到进一步的自动化(例如自主)机器;和/或进一步包括;(例如,由其控制器和/或一个或多个处理器)执行自动化机器的一个或多个传感器的第二感测过程。
[0163] 示例9是根据示例1至示例8中一项的方法,进一步包括(例如,用于实现传感器发现协议):(例如,由自动化(例如自主)机器)基于与多个自动化(例如自主)机器(例如其一个或多个自动化(例如自主)机器)有关、和/或与要被确定为参考机器的自动化(例如自主)机器有关(例如,与其一个或多个传感器有关)、和/或与自动化(例如自主)机器有关(例如,与其一个或多个传感器有关)的(例如传感器相关的)信息来将多个自动化(例如自主)机器(例如,一组自动化(例如自主)机器)中的至少一者确定为进一步的自动化(例如自主)机器。
[0164] 示例10是根据示例9的方法,其中对多个自动化(例如自主)机器中的至少一者的确定包括:生成对多个自动化(例如自主)机器(例如,对一个或多个自动化(例如自主)机器、例如对多个自动化(例如自主)机器中的每个自动化(例如自主)机器)提供信息的请求。
[0165] 示例11包括根据示例9或示例10的方法,进一步包括:例如,(例如由自动化(例如,自主)机器)(例如,根据例如(无线和/或有线的)通信协议)生成包括信息和/或请求的第三消息。
[0166] 示例12是根据示例9至11中一项的方法,其中与多个自动(例如自主)机器有关的信息表示以下各项的一项或多项:多个自动化(例如自主)机器的(例如,一个或多个自动化(例如自主)机器的)一个或多个传感器;对多个自动化(例如自主)机器(例如,一个或多个自动化(例如自主)机器)的评定;多个自动化(例如自主)机器(例如,一个或多个自动化(例如自主)机器)的位置;感测的物理量(例如,一个或多个自动化(例如自主)机器)。
[0167] 示例13是根据示例11至示例12中一项方法,其中与自动化(例如,自主)机器有关的信息表示以下各项中的一项或多项:自动化(例如,自主)机器的一个或多个传感器;自动化(例如,自主)机器的操作状况;自动化(例如,自主)机器的环境状况;自动化(例如,自主)机器的位置;由第二感测过程感测的物理量。
[0168] 示例14是根据示例1至示例13中一项的方法,其中,评定的确定进一步基于对进一步的自动化(例如,自主)机器(例如,其一个或多个传感器)的进一步评定,其中,例如,该进一步评定(例如,经由第一消息)被提供给自动化(例如,自主)机器。
[0169] 示例15是根据示例1至14中一项的方法,其中,对自动化(例如,自主)机器的评定表示第二感测过程的可靠性;和/或其中,对进一步的自动化(例如,自主)机器的进一步评定表示第一感测过程的可靠性。
[0170] 示例16是根据示例1至15中一项的方法,其中,第二感测过程包括感测由自动化(例如,自主)机器执行任务的结果。
[0171] 示例17是根据示例1至16中一项的方法,其中,第一感测过程包括感测由进一步的自动化(例如,自主)机器执行(例如重复)任务或该任务的结果。
[0172] 示例18是根据示例1至17中一项的方法,进一步包括:(例如由自动化(例如,自主)机器)(例如,根据例如(无线和/或有线的)通信协议)生成第四消息,第四消息指示评定和/或包括基于评定的指令,其中,例如第四消息可以针对进一步自动化(例如,自主)机器和/或多个机器。
[0173] 示例19是根据示例1至18中一项的方法,进一步包括:(例如由自动化(例如,自主)机器)基于评定和/或基于自动化(例如,自主)机器在第二感测过程期间的状况(例如,环境状况和/或操作状况)来更新(例如,训练)和/或生成评定估计模型,其中,例如,该状况由自动化(例如,自主)机器感测。例如,评定估计模型520不一定是经训练的模型,例如,如果是正式模型。
[0174] 示例20是根据示例1至19中一项的方法,进一步包括:(例如,由自动化(例如,自主)机器)基于评定(例如,一个或多个传感器执行第二感测过程)来估计由自动化(例如,自主)机器的一个或多个传感器(例如,至少一个传感器)的故障时间。
[0175] 示例21是根据示例1至示例20中一项的方法,其中第二感测过程被布置在第一感测过程之前和/或在生成请求之前。
[0176] 示例22是根据示例1至21中一项的方法,其中响应于(例如由自动化(例如,自主)机器)对事件的确定而执行评定的确定;该事件包括以下各项中的一项或多项:自动化(例如,自主)机器与一组自动化(例如,自主)机器的从属关系的改变;自动化(例如,自主)机器对任务的分配的改变;自动化(例如,自主)机器的即将进行的维护;自动化(例如,自主)机器的维护的完成;自动化(例如,自主)机器的环境改变;人类操作者用于确定评定的指令;与自动化(例如,自主)机器相关的异常;(例如,由自动化(例如,自主)机器)存储的标准被满足。
[0177] 示例23是根据示例1至示例22中一项的方法,进一步包括:当(例如,响应于)评定满足标准(例如,当评定表示第二感测过程的缺乏可靠性时,该标准被满足)时,(例如,由自动化(例如,自主)机器)请求对自动化(例如,自主)机器的维护。
[0178] 示例24是一种(例如,用于自动化(例如,自主)机器和/或根据示例1至22中一者的)方法,包括:(例如,由自动化(例如,自主)机器)确定自动化(例如,自主)机器(通过使用其一个或多个传感器)执行的(例如,作为第二)感测过程是否满足(例如,由自动化(例如,自主)机器存储的)可靠性标准;当(例如,响应于)可靠性标准未被满足时,(例如,根据无线和/或有线通信协议)生成到该或另一进一步的自动化(例如,自主)机器的第五消息(例如,作为第二消息),该第五消息包括对使用该进一步的自动化(例如,自主)机器的一个或多个传感器的进一步(例如,作为第一)感测过程的结果的请求,其中,例如,第二感测过程在第一感测过程之前,其中,例如,感测过程被配置成用于提供与进一步感测过程相同的目标信息(例如,物理量)。
[0179] 示例25是根据示例24的方法,其中,当发生以下各项中的一项或多项时,可靠性标准不被满足:感测过程的结果(例如,其统计误差)超过(例如,所存储的)容限范围或值;和/或自动化(例如,自主)机器的环境状况改变。
[0180] 示例26是(例如,用于自动化(例如,自主)机器)控制器,包括被配置成用于执行根据示例1至25中一项的方法的一个或多个处理器。
[0181] 示例27是一种或多种非暂态计算机可读介质,在其上存储有指令,该指令在由一个或多个处理器执行时,使一个或多个处理器用于执行示例1到25中的一项的方法。
[0182] 示例28是包括根据示例26的控制器和/或根据示例27的一个或多个非暂态计算机可读介质的自动化(例如,自主)机器。
[0183] 示例29是根据示例28的自动化(例如,自主)机器,进一步包括:一个或多个传感器(例如,包括至少一个传感器),该一个或多个传感器中的至少一个传感器被配置成用于执行第二感测过程和/或感测过程。
[0184] 示例30是一种包括根据示例28或29的自动化(例如,自主)机器和进一步的自动化(例如,自主)机器的系统,其中,例如,该进一步的自动化(例如,自主)机器包括:至少一个传感器,被配置成用于执行第一感测过程和/或进一步的感测过程,其中,例如,进一步自动化(例如,自主)机器包括与自动化(例如,自主)机器的至少一个传感器互补的至少一个传感器。
[0185] 示例31是根据示例30的系统,其中自动化(例如,自主)机器和进一步的自动化(例如,自主)机器(例如,其一个或多个处理器)被配置成用于实现协作式任务管理和/或作为一组自动化(例如,自主)机器的成员。
[0186] 示例32是一种(例如,用于自动化(例如,自主)机器,例如,作为根据示例1至31中一项的进一步的自动化(例如,自主)机器和/或是参考机器)方法,包括:(例如,由自动化(例如,自主)机器)(例如,根据例如(无线和/或有线的)通信协议)从进一步的自动化(例如,自主)机器(例如,作为根据示例1至31中一项的自动化(例如,自主)机器和/或作为被监测的机器)中获得第一消息,该第一消息包括对提供感测过程的结果(例如,该消息进一步指示感测过程的目标信息)的请求和/或指示要由感测过程提供的目标信息;(例如,由自动化(例如,自主)机器)根据例如(无线和/或有线的)通信协议生成到进一步的自动化(例如,自主)机器的第二消息,该第二消息包括自动化(例如,自主)机器执行的感测过程的结果,其中,例如,自动化(例如,自主)机器和进一步的自动化(例如,自主)机器(例如,其一个或多个处理器)被配置成用于实现协作式任务管理和/或作为一组自动化(例如,自主)机器的成员。
[0187] 示例33是包括一个或多个处理器的控制器,该一个或多个处理器被配置成用于执行示例32的方法。
[0188] 示例34是一种或多种非暂态计算机可读介质,在其上存储有指令,该指令在由一个或多个处理器执行时,使一个或多个处理器用于执行示例32的方法。[00189]示例35是包括根据示例33的控制器和/或根据示例34的一个或多个非暂态计算机可读介质的自动化(例如,自主)机器。
[0190] 示例36是根据示例35的自动化(例如,自主)机器,进一步包括:一个或多个传感器,该一个或多个传感器中的至少一者被配置成用于执行感测过程。
[0191] 示例37是一种包括根据示例35或36的自动化(例如,自主)机器和进一步的自动化(例如,自主)机器的系统,其中,例如,进一步的自动化(例如,自主)机器包括与自动化(例如,自主)机器的至少一个传感器互补的至少一个传感器。
[0192] 示例38是根据示例37的系统,其中自动化(例如,自主)机器和进一步的自动化(例如,自主)机器被配置成用于实现协作式任务管理。
[0193] 示例39是一种(例如,控制器和/或控制器的一个或多个处理器(例如,控制器作为服务器的一部分)实现的)方法,包括:(例如,由控制器和/或其一个或多个处理器)实现一组自动化(例如,自主)机器的(例如,无线和/或有线的)数据交换协议,以(例如,根据协作式任务管理)交换数据;其中,该数据包括该组自动化(例如,自主)机器的第一自动化(例如,自主)机器执行的第一感测过程的第一结果,并且其中数据包括该组自动化(例如,自主)机器中的第二自动化(例如,自主)机器(例如参考机器)执行的第二感测过程的第二结果;(例如,由控制器和/或其一个或多个处理器)基于第一结果并且基于第二结果来确定信息(例如,作为评估);(例如,由控制器和/或其一个或多个处理器)任选地存储该信息。
[0194] 示例40是根据示例39的方法,其中信息包括(例如,由以下各项形成)以下各项中的一项或多项或被分配给以下各项中的一项或多项:对第一自动化(例如自主)机器(例如,被监测的机器)的评定;对第二自动化(例如自主)机器(例如,被监测的机器)的评定;与第一自动化(例如自主)机器(例如,被监测的机器)和/或第二自动化(例如自主)机器(例如,被监测的机器)有关的情境信息;与第一自动化(例如自主)机器(例如,被监测的机器)和/或第二自动化(例如自主)机器(例如,被监测的机器)有关的机器相关的信息(例如,来源、制造者、型号、制造年份、已知问题、召回);与第一自动化(例如自主)机器(例如,被监测的机器)和/或第二自动化(例如自主)机器(例如,被监测的机器)有关的操作者相关的信息;来自对等自动化机器的众包信息;来自统计上被部署的源的信息(例如,传感器,例如,相机,人类测得的数据;来自基础设施的数据);第一自动化(例如自主)机器(例如,被监测的机器)和/或第二自动化(例如自主)机器(例如,被监测的机器)的维护记录;与第一结果和/或第二结果的误差裕度有关的信息;与第一自动化(例如自主)机器(例如,被监测的机器)和/或第二自动化(例如自主)机器(例如,被监测的机器)有关的反馈或来自其的反馈;关于根据数据交换协议交换数据的基础设施相关的信息;第一结果和/或第二结果。
[0195] 示例41是根据示例39或示例40的方法,其中,确定信息进一步基于以下各项中的一项或多项:撤销管理;受信任的执行环境;众包数据与来自统计上部署的源的数据和反馈的相关性。
[0196] 示例42是根据示例39至41中一项的方法,进一步包括:(例如,由控制器和/或其一个或多个处理器)基于信息提供以下各项中的一项或多项:撤销管理;数据挖掘,用于例如基于第一自动化(例如自主)机器(例如,被监测的机器)和/或第二自动化(例如自主)机器(例如,被监测的机器)彼此之间和/或与基础设施的协作来确定传感降级;基于反馈来更新(例如,调整)用于(例如,执行)数据挖掘的数据挖掘逻辑;(例如基于所规定的策略)向一个或多个用户发出一个或多个通知和/或一个或多个警报;一个或多个情境推荐,用于(例如,基于误差裕度和/或传感降级)来补偿和/或缓解传感降级。
[0197] 示例43是包括一个或多个处理器的控制器,该一个或多个处理器被配置成用于执行根据示例39至42中一项的方法。
[0198] 示例44是一种或多种非暂态计算机可读介质,在其上存储有指令,该指令在由一个或多个处理器执行时,使一个或多个处理器用于执行示例39至42中的一项的方法。
[0199] 示例45是包括根据示例43的控制器和/或根据示例44的一个或多个非暂态计算机可读介质的网络节点(例如,服务器)。
[0200] 示例46是包括根据示例45的网络节点以及进一步包括第一自动化(例如,自主)机器和/或第二自动化(例如,自主)机器的系统。
[0201] 尽管以上描述和相关附图可将电子设备组件描绘为单独的元件,但技术人员将会领会将分立的元件组合或集成为单个元件的各种可能性。此类可能性可包括:组合两个或更多个电路以用于形成单个电路,将两个或更多个电路安装到共同的芯片或基座上以形成集成元件,在共同的处理器核上执行分立的软件组件,等等。相反,技术人员将意识到可将单个元件分成两个或更多个分立的元件,诸如,将单个电路分解为两个或更多个单独的电路,将芯片或基座分成最初设置在其上的分立的元件,将软件组件分成两个或更多个部分并在单独的处理器核上执行每个部分,等等。
[0202] 应当领会,本文中详述的方法的实现方式在本质上是说明性的,并且因此被理解为能够在相应的设备中实现。同样,应当领会,本文中详述的设备的实现方式被理解为能够被实现为相应的方法。因此,应当理解,与本文详述的方法对应的设备可以包括被配置成执行相关方法的每个方面的一个或多个组件。
[0203] 以上描述中定义的所有首字母缩写词附加地包含在本文包括的所有权利要求中。

当前第1页 第1页 第2页 第3页