技术领域
[0001] 本发明属于电解质电池器件技术领域,具体涉及一种金属氧化物陶瓷电池基板及其制备方法。
相关背景技术
[0002] 金属氧化物陶瓷电池器件包括薄陶瓷片(例如氧化锆)形式的电解质片材。基于氧化锆的电解质片材负载多个电池,每个电池由位于氧化锆片材任意侧的阳极层和阴极层形成。
[0003] 例如公告号为CN103872367B的专利公开了一种固体氧化物燃料电池氧化锆基电解质薄膜,该电解质薄膜包括致密层与疏松层,其中致密层能够有效隔绝阴极气与阳极气,使开路电压接近于理论值;疏松层能够改善阴极/电解质界面接触性能。该电解质薄膜采用射频磁控反应溅射的方法制备,氧化锆基电解质薄膜厚度可调可控,厚度均匀、气密性良好。该电解质薄膜的使用,有效的降低了电池的欧姆电阻,提高了电池的性能。
[0004] 电池基板片材烧结时,由于疏松的金属氧化物(例如氧化锆)胶体与其表面的致密电解质层是共同烧结的,而二者的热膨胀系数有差异,导致烧结的片材局部出现表面起伏和变形,因此需要将该变形的部分切割去除,保证片材的平整性和一致性;同时,还需要在电池基板内钻孔用于填充电解液,并封孔。
[0005] 现有的片材分切可采用激光切割,钻孔方式多数为机械打孔或者激光打孔。例如公告号为CN101536235B的专利公开了一种烧结的电解质片材,其包括:厚度不大于45微米的主体,以及激光切削加工的特征,所述特征具有至少一个烧蚀至少10%的边缘表面。公开了对所述电解质片材进行微切削加工的方法,所述方法包括以下步骤:(i)负载烧结的电解质片材;(ii)用激光对所述片材进行微切削加工,所述激光的波长小于2微米,能量密度小于200焦/厘米2,重复频率(RR)为30赫兹至1兆赫,切割速度优选超过30毫米/秒。改进的穿孔:通过激光微切削加工,可以穿透/切透印刷的电极或其他层,高效地形成直径小于75微米(例如60微米,45微米,40微米,30微米,25微米或20微米)的高质量通孔102,可以得到复杂的非圆形的通孔形状,以及复杂的通孔图案……例如,可以用一些较小的以簇状形式排列的通孔代替单独的直径75微米的通孔。由于通孔直径较小,可以更高效地进行通孔填充。通过微切削加工还可以在与电解质片材相连的几个材料层中形成孔。例如,可以在将阳极层103印刷到基于氧化锆的电解质片材100上并进行烧制之后,微切削加工形成孔,由此同时在这两个层(电解质片材100和阳极103)上形成连续穿通的通孔。然而该通孔的加工方式仍然由激光辐射获得,此过程中需要反复地精确调整激光的脉冲、频率和功率等参数,使通孔能够穿透片材,同时激光热能辐射不对电池片材产生热损伤,而且还要考虑通孔数量,若通孔数量多,则打孔次数多,由于激光损伤的累积效应,造成片材破裂。
[0006] 封孔方式通常为在电池基材的侧壁上涂覆一层陶瓷材料,然后再次烧结成为致密陶瓷层,其烧结温度与表面的致密电解质层的烧结温度有温差,加上材质热膨胀系数的差异性,在电池基板高低温循环(例如常温至800℃之间反复快速循环)测试过程中,电池基板侧壁的陶瓷层不能耐受该高低温冲击,会出现开裂现象。
具体实施方式
[0035] 实施例1
[0036] 本发明的金属氧化物可以是氧化锆、氧化镍等金属氧化物。本实施例以氧化锆为例,公开一种金属氧化物陶瓷电池基板的制备方法,包括以下步骤:
[0037] 制备疏松电解质基体1:疏松电解质基体1是对氧化锆胶体的混合物采用溶胶‑凝胶法制备得到的,溶胶‑凝胶法制备疏松电解质基体为公知技术,不再赘述。疏松电解质基体内部预埋可高温分解的丝线,丝线材质为锆丝,这样不影响基体材质成分;
[0038] 烧结电池基板:在疏松电解质基体1的表面覆盖致密电解质层2,其主要材质为二氧化硅玻璃,与疏松电解质基体1共同高温烧结后,致密电解质层2密封疏松电解质基体1的表面而形成电池基板;丝线融化后由疏松电解质基体1吸收,在疏松电解质基体1内形成通孔3;多排通孔3间隔地分布于电池基板的侧壁4上,通孔3的直径10‑50微米,水平间隔0.3‑1mm;
[0039] 分切电池基板,将电池基板的表面起伏和变形部分切割掉,分割得到规则、平整的条形半成品,分切方法可采用激光切割;电池基板的分切线方向切割通孔3,即通孔3的横截面位于电池基板被分切的侧壁4上,如图1所示;
[0040] 激光封孔:采用短脉冲紫外激光器熔覆条形半成品的侧壁4而封住通孔3,固化后完成封孔。从电池基板条形半成品的未封孔一侧的侧壁内通入氢气。
[0041] 采用本实施例方法制备的氧化锆电池基板,包括疏松电解质基体1、致密电解质层2和侧封层,疏松电解质基体1内设有若干个通孔3,通孔3贯穿疏松电解质基体1的侧壁4;致密电解质层2覆盖于疏松电解质基体1的表面,密封疏松电解质基体。侧封层由紫外激光器快速熔覆侧壁上的疏松电解质基体得到,侧封层密封通孔3的端部。
[0042] 本实施例采用激光熔覆封孔,取代对侧壁4涂覆密封涂层再进行二次烧结的工艺,改善了在高低温循环测试中导致电池基板侧壁开裂的现象。本实施例的紫外激光的波长短(355nm),其能量直接作用于化学键,引起分子分解产生熔融状态,因此可实现常温熔覆,不需要将待熔覆部分高温加热到熔点,防止了高温辐射导致陶瓷电池基板开裂问题。
[0043] 实施例2
[0044] 如图2所示,本实施例在实施例1的基础上,在激光封孔之后还包括以下步骤:
[0045] 预热电池基板:先将电池基板预热至400‑600℃,优选500℃,防止在蚀刻和焊接过程中,焊槽部分因温度突变梯度大而导致应力增加,防止电池基板开裂;同理,可在封孔前对电池基板预热。
[0046] 蚀刻焊槽:在致密电解质层表面用皮秒短脉冲紫外激光器蚀刻焊槽5,皮秒短脉冲紫外激光器发射355nm的皮秒激光,用皮秒短脉冲紫外激光高速蚀刻焊槽5,可避免焊槽5表面氧化,保证电路层的导通性。激光蚀刻常用于对金属、塑料和玻璃材质上,而由于陶瓷电池基板材质脆弱,因此未见用于陶瓷电池基板的蚀刻。本实施例采用短脉冲紫外激光器蚀刻陶瓷材质的焊槽,保护电池基板不会开裂。
[0047] 清洗焊槽5后,在焊槽5内印电路层,电路层材质为银浆,电路层的厚度为4‑7微米,优选5微米。
[0048] 在镍片6的背面均匀地涂覆一层锡层,将镍片6置于电池基板上,使镍片背面的锡层紧贴电路层;锡层的厚度为电路层厚度的0.9‑1.1倍,优选锡层的厚度与电路层的厚度相同。
[0049] 用纳秒短脉冲紫外激光器将镍片6焊接于电路层上。由于锡层仅起到助焊作用,其厚度很薄,因此被激光器快速焊接固定后,镍片6与镀银层已穿过锡层而互相结合,镍片与电路层经过1000℃的高温试验后无脱落现象,并且电路正常导通。
[0050] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。