首页 / 一种氮掺杂碳化钒及其制备方法和应用

一种氮掺杂碳化钒及其制备方法和应用有效专利 发明

技术领域

[0001] 本发明属于SCR脱硝催化剂再利用技术领域,具体涉及一种氮掺杂碳化钒及其制备方法和应用。

相关背景技术

[0002] 过渡金属碳化物具有优秀的催化性能,可应用于电催化析氢、析氧、加氢催化和甲醇催化氧化等领域。其中,碳化钒具有优异的电催化氧还原性能,与铂类贵金属催化剂相比,碳化钒具有成本更低、热稳定性更好、储量更丰富、抗催化毒性更强等优点。碳化钒中氮原子的引入可以促使其表面产生活性位点,进而提高其电催化产氢活性,研究表明氮掺杂碳化钒具有更优异的氧还原性能。碳化钒一般通过含碳物质与金属钒或钒化合物高温反应进行制备,钒属于稀有金属,钒资源的开发一方面会造成资源的进一步消耗,另一方面在开采冶炼过程中不可避免的对环境造成破坏,如何在获得高性能碳化钒催化材料的同时降低整个工艺流程的资源消耗强度,实现资源的循环利用,是未来材料开发过程中需要解决的重要问题。
[0003] 中国多煤少油少气的资源凛赋条件决定了煤炭在我国能源系统中的基础地位。我国一半煤炭资源用于燃煤发电,煤炭燃烧会产生大量氮氧化物污染物,SCR法是当前国内外燃煤电厂应用最为广泛的烟气脱硝后处理技术。脱硝催化剂是SCR法的核心。脱硝催化剂中载体主要成分为TiO2、活性成分主要为V2O5、WO3和MoO3等。在SCR系统实际运行的过程中,随着运行时间的增长,脱硝催化剂将不可避免的出现活性降低、寿命缩短等问题,导致脱硝效率的降低。每年燃煤电厂会产生大量的废弃SCR脱硝催化剂。
[0004] 废弃SCR脱硝催化剂含有V2O5、WO3或MoO3等有毒金属氧化物,属于危险固体废物,对其进行填埋处理不仅会占据大量的土地资源,也会对环境污染带来潜在的风险。钒元素是人类经济社会发展所需的重要金属资源,而由于其在地壳中丰度较低,被称为稀有金属。对废弃SCR脱硝催化剂中钒元素进行回收并制备高性能能源催化材料碳化钒,不仅具有环境效益,同时也会产生一定的经济价值。
[0005] 中国专利文献CN111994952A公开了一种冶金级五氧化二钒真空升华制备高纯五氧化二钒的方法,该方法包括,(1)冶金级五氧化二钒干燥、粉碎;(2)将处理后的冶金级五‑3 ‑7氧化二钒送入真空升华设备,抽真空至10 ‑10 Pa,升温至700‑1000℃进行真空升华;(3)真空升华完成后,冷却,停止真空,取出得到高纯五氧化二钒,该专利提供的方法需要保持真空环境,工艺条件要求苛刻,成本高。此外,SCR脱硝催化剂中含有多种氧化物,该专利文献提供的方法不能很好地将钒氧化物从催化剂中分离出来。

具体实施方式

[0043] 提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
[0044] 实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
[0045] 实施例1
[0046] 本实施例提供了一种氮掺杂碳化钒的生产系统,包括,
[0047] 预处理装置,用于去除原料中的杂质,保证回收后氧化钒的纯度;预处理装置包括气枪、水洗器和干燥器,其中,气枪用于对原料进行吹洗,水洗器用于对吹洗后的原料进行水洗,干燥器用于干燥水洗后的原料。在本实施例中,气枪为高压气枪;原料来自废弃SCR脱硝催化剂。
[0048] 分离装置,与预处理装置连通,分离原料中的氧化钒。分离装置内部设置有多孔隔板,预处理后的原料盛放于多孔隔板上,对分离装置加热至690‑750℃,使预处理后的原料熔融,熔融后的氧化钒通过多孔隔板向下渗出,在分离装置底部收集分离得到的氧化钒,未熔融的固态结构(例如氧化钼、氧化钨、氧化钛等未熔融的固态结构)在多孔隔板,实现了熔融态氧化钒与固体结构的分离和回收。分离装置上部设置有进料口,用于将待熔融分离的原料输送至分离装置内,分离装置中下部和/或底部设置有出料口,用于输送分离得到的氧化钒。
[0049] 碳化装置,用于碳源和氮源的一次碳化反应,得到氮掺杂碳材料;需要保持碳化装置内部为惰性气氛,防止得到的氮掺杂碳材料发生氧化反应。
[0050] 混合装置,分别与碳化装置与分离装置连通,氧化钒和氮掺杂碳材料在混合装置内混合,有利于制备产物形貌和氮元素含量的均一化。混合装置包括连通的储存罐和球磨罐,储存罐与碳化装置连通,用于储存氮掺杂碳材料,储存罐内部设置有温度控制器,用于控制储存罐内部温度,防止氮掺杂碳材料发生分解;球磨罐与分离装置连通,分离后的氧化钒进入球磨罐,储存罐储存的氮掺杂碳材料进入球磨罐与氧化钒混合,球磨罐包括不同粒径的钢珠可以使氧化钒和氮掺杂碳材料混合。球磨混合时可以采用干磨或湿磨两种方式,湿磨时需要加入乙醇等易挥发且不与原料反应的液体溶剂,湿磨后需要对球磨后的杨平进行烘干处理。在本实施例中,碳源和氮源是尿素、三聚氰胺、聚吡咯、大豆和蛋黄中的至少一种。球磨采用干磨的方法。
[0051] 合成装置,用于氧化钒和氮掺杂碳材料的二次碳化反应。合成装置包括依次连通的配气器、合成器和尾气处理器,其中合成器与混合装置连通。配气器为合成装置提供惰性气氛,主要惰性气体为N2/Ar等。合成器包括反应炉、反应器和温度控制模块,反应器置于反应炉内部,氧化钒和氮掺杂碳材料的二次碳化反应在反应器中进行,温度控制模块与反应炉连接,可实时控制反应炉的升温温度、升温速率和保温时间。尾气处理器包括吸附设备和检测设备,吸附设备用于吸附碳化过程中产生的挥发性污染物;检测设备对尾气进行实时监测,保证整个反应系统在反应过程中排放的尾气满足环境要求。反应器的材质可以但不限于耐高温金属材料、陶瓷材料、石墨、玻璃等,在本实施例中,反应器的材质为陶瓷材料。
[0052] 作为一种优选地实施方式,分离装置和混合装置之间还设置有破碎装置,分离装置分离得到的氧化钒进入破碎装置中进行破碎,降低氧化钒的粒度,便于氧化钒和氮掺杂碳材料混合均匀化,破碎后的氧化钒进入混合装置的球磨罐中与氮掺杂碳材料混合。
[0053] 作为另一种优选地实施方式,分离装置外部设置有保温层,有利于分离反应过程中温度的保持,减小热量损失,分离装置还连接有温度控制器,可以根据实际需要对反应过程温度进行准确控制。
[0054] 上述氮掺杂碳化钒的生产系统的工作原理:
[0055] 原料进入预处理装置,经吹洗、水洗、干燥后进入分离装置;
[0056] 原料在分离装置中熔融,实现氧化钒和其他化学物质的分离;
[0057] 碳源和氮源在碳化装置中发生一次碳化反应得到氮掺杂碳材料;
[0058] 分离后的氧化钒和氮掺杂碳材料混合后进入合成装置,升温,发生二次碳化反应,得到氮掺杂碳材料。
[0059] 实施例2
[0060] 本实施例提供了一种氮掺杂碳化钒的制备方法,其流程如图1所示,包括以下步骤,
[0061] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0062] 预处理后的废弃SCR脱硝催化剂加热至750℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0063] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:2的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0064] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至1200℃,进行二次碳化反应,反应时间为12h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为0.03%的氮掺杂的碳化钒。
[0065] 实施例3
[0066] 本实施例提供了一种氮掺杂碳化钒的制备方法,包括以下步骤,[0067] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0068] 预处理后的废弃SCR脱硝催化剂加热至750℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0069] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:2的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0070] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至1000℃,进行二次碳化反应,反应时间为16h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为0.41%的氮掺杂的碳化钒。
[0071] 实施例4
[0072] 本实施例提供了一种氮掺杂碳化钒的制备方法,包括以下步骤,[0073] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0074] 预处理后的废弃SCR脱硝催化剂加热至750℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0075] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:2的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0076] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至850℃,进行二次碳化反应,反应时间为24h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为0.62%的氮掺杂的碳化钒。
[0077] 实施例5
[0078] 本实施例提供了一种氮掺杂碳化钒的制备方法,包括以下步骤,[0079] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0080] 预处理后的废弃SCR脱硝催化剂加热至750℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0081] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:3的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0082] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至850℃,进行二次碳化反应,反应时间为24h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为0.81%的氮掺杂的碳化钒。
[0083] 实施例6
[0084] 本实施例提供了一种氮掺杂碳化钒的制备方法,包括以下步骤,[0085] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0086] 预处理后的废弃SCR脱硝催化剂加热至750℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0087] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:4的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0088] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至850℃,进行二次碳化反应,反应时间为24h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为0.7%的氮掺杂的碳化钒。
[0089] 实施例7
[0090] 本实施例提供了一种氮掺杂碳化钒的制备方法,包括以下步骤,[0091] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0092] 预处理后的废弃SCR脱硝催化剂加热至690℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0093] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:4的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0094] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至850℃,进行二次碳化反应,反应时间为16h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为1.28%的氮掺杂的碳化钒。
[0095] 实施例8
[0096] 本实施例提供了一种氮掺杂碳化钒的制备方法,包括以下步骤,[0097] 对废弃SCR硝化催化剂依次进行高压水枪吹洗、水洗器水洗和干燥器干燥预处理,去除废弃SCR表面的杂质;
[0098] 预处理后的废弃SCR脱硝催化剂加热至698℃熔融分离氧化钒,收集熔融后的氧化钒,熔融分离实现了钒源和其它物质的分离,其它物质未出现熔融;
[0099] 分离后的氧化钒输进行破碎,减小氧化钒的粒度;尿素为氮掺杂碳化钒提供氮源和碳源,尿素在650℃条件下热解,一次碳化后得到氮掺杂材料;将破碎后的氧化钒和氮掺杂材料按照摩尔比为1:4的比例混合,在350rpm条件下进行24h球磨,使氧化钒和氮掺杂碳材料充分混合;
[0100] 氧化钒和氮掺杂碳材料混合、碳化前先通氮气1h,然后将氧化钒和氮掺杂碳材料混合,在惰性气体的保护下,以4℃/min的升温速率升高至850℃,进行二次碳化反应,反应时间为16h,反应完成后,温度降低至室温,产物研磨均匀后,即得氮含量为1.23%的氮掺杂的碳化钒。
[0101] 显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页 第1页 第2页 第3页