技术领域
[0003] 本发明涉及例如有机发光二极管等装置中使用的结构和布置,以及包括其的装置。
相关背景技术
[0004] 出于多种原因,利用有机材料的光电装置变得越来越受欢迎。用于制造所述装置的许多材料相对较为便宜,因此有机光电装置具有优于无机装置的成本优势的潜力。另外,有机材料的固有性质(例如其柔性)可以使其较适用于特定应用,如在柔性衬底上的制造。有机光电装置的实例包括有机发光二极管/装置(OLED)、有机光电晶体管、有机光伏电池和有机光电检测器。对于OLED,有机材料可以具有优于常规材料的性能优势。举例来说,有机发射层发射光的波长通常可以容易地用适当的掺杂剂来调节。
[0005] OLED利用有机薄膜,其在电压施加于装置上时会发射光。OLED正成为用于如平板显示器、照明和背光的应用中的日益受关注的技术。美国专利第5,844,363号、第6,303,238号和第5,707,745号中描述若干OLED材料和配置,所述专利以全文引用的方式并入本文中。
[0006] 磷光发射分子的一个应用是全色显示器。针对此类显示器的行业标准需要适合于发射特定颜色(称为“饱和”色)的像素。具体来说,这些标准需要饱和红色、绿色和蓝色像素。或者,OLED可经设计以发射白光。在常规液晶显示器中,使用吸收滤光器过滤来自白色背光的发射以产生红色、绿色和蓝色发射。相同技术也可以用于OLED。白色OLED可以是单EML装置或堆叠结构。可以使用所属领域中所熟知的CIE坐标来测量色彩。
[0007] 如本文所用,术语“有机”包括可以用于制造有机光电装置的聚合材料和小分子有机材料。“小分子”是指并非聚合物的任何有机材料,并且“小分子”可能实际上相当大。在一些情况下,小分子可以包括重复单元。举例来说,使用长链烷基作为取代基并不会将某一分子从“小分子”类别中去除。小分子还可以并入聚合物中,例如作为聚合物主链上的侧接基团或作为主链的一部分。小分子还可以充当树枝状聚合物的核心部分,所述树枝状聚合物由一系列构建在核心部分上的化学壳层组成。树枝状聚合物的核心部分可以是荧光或磷光小分子发射体。树枝状聚合物可以是“小分子”,并且认为当前在OLED领域中使用的所有树枝状聚合物都是小分子。
[0008] 如本文所用,“顶部”意指离衬底最远,而“底部”意指最靠近衬底。在第一层被描述为“安置于”第二层“上方”的情况下,第一层被安置于离基板较远处。除非规定第一层“与”第二层“接触”,否则第一与第二层之间可以存在其它层。举例来说,即使阴极和阳极之间存在各种有机层,仍可以将阴极描述为“安置于”阳极“上方”。
[0009] 如本文所用,“溶液可处理”意指能够以溶液或悬浮液的形式在液体介质中溶解、分散或传输和/或从液体介质沉积。
[0010] 当认为配体直接促成发射材料的光敏性质时,所述配体可以被称为“光敏性的”。当认为配体并不促成发射材料的光敏性质时,所述配体可以被称为“辅助性的”,但辅助性配体可以改变光敏性配体的性质。
[0011] 如本文所用,并且如所属领域的技术人员通常将理解,如果第一能级较接近真空能级,那么第一“最高占用分子轨道”(Highest Occupied Molecular Orbital,HOMO)或“最低未占用分子轨道”(Lowest Unoccupied Molecular Orbital,LUMO)能级“大于”或“高于”第二HOMO或LUMO能级。由于将电离电位(IP)测量为相对于真空能级的负能量,因此较高HOMO能级对应于具有较小绝对值的IP(较不负(less negative)的IP)。类似地,较高LUMO能级对应于具有较小绝对值的电子亲和性(EA)(较不负的EA)。在顶部是真空能级的常规能级图上,材料的LUMO能级高于相同材料的HOMO能级。“较高”HOMO或LUMO能级表现为比“较低”HOMO或LUMO能级更靠近这个图的顶部。
[0012] 如本文所用,并且如所属领域的技术人员通常将理解,如果第一功函数具有较高绝对值,那么第一功函数“大于”或“高于”第二功函数。因为通常将功函数测量为相对于真空能级的负数,所以这意指“较高”功函数是更负的(more negative)。在顶部是真空能级的常规能级图上,“较高”功函数经说明为在向下方向上离真空能级较远。因此,HOMO和LUMO能级的定义遵循与功函数不同的定则。
[0013] 关于OLED和上文所述的定义的更多细节可以见于美国专利第7,279,704号中,所述专利以全文引用的方式并入本文中。
具体实施方式
[0022] 一般来说,OLED包含至少一个有机层,其安置于阳极与阴极之间并且与阳极和阴极电连接。当施加电流时,阳极注入空穴并且阴极注入电子到有机层中。所注入的空穴和电子各自朝带相反电荷的电极迁移。当电子和空穴定位在同一分子上时,形成“激子”,其为具有激发能态的定域电子-空穴对。当激子通过光发射机制弛豫时,发射光。在一些情况下,激子可以定位于准分子(excimer)或激态复合物上。非辐射机制(如热弛豫)也可能发生,但通常被视为不合需要的。
[0023] 最初的OLED使用从单态发射光(“荧光”)的发射分子,如例如美国专利第4,769,292号中所公开,其以全文引用的方式并入。荧光发射通常在小于10纳秒的时帧内发生。
[0024] 最近,已经展示了具有从三重态发射光(“磷光”)的发射材料的OLED。巴尔多(Baldo)等人,“来自有机电致发光装置的高效磷光发射(Highly Efficient
Phosphorescent Emission from Organic Electroluminescent Devices)”,自然
(Nature),第395卷,151-154,1998(“巴尔多-I”);和巴尔多等人,“基于电致磷光的极高效绿色有机发光装置(Very high-efficiency green organic light-emitting devices
based on electrophosphorescence)”,应用物理快报(Appl.Phys.Lett.),第75卷,第3,4-
6期(1999)(“巴尔多-II”),所述文献以全文引用的方式并入。美国专利第7,279,704号第5-
6栏中更详细地描述磷光,所述专利以引用的方式并入。
[0025] 图1展示有机发光装置100。图不一定按比例绘制。装置100可以包括衬底110、阳极115、空穴注入层120、空穴传输层125、电子阻挡层130、发射层135、空穴阻挡层140、电子传输层145、电子注入层150、保护层155、阴极160和阻挡层170。阴极160是具有第一导电层162和第二导电层164的复合阴极。装置100可以通过按顺序沉积所述层来制造。这些各种层和实例材料的性质和功能在US 7,279,704第6-10栏中更详细地描述,所述专利以引用的方式并入。
[0026] 可以得到这些层中的每一个的更多实例。举例来说,柔性并且透明的衬底-阳极组合公开于美国专利第5,844,363号中,所述专利以全文引用的方式并入。经p掺杂的空穴传输层的实例是以50:1的摩尔比掺杂有F4-TCNQ的m-MTDATA,如美国专利申请公开第2003/0230980号中所公开,所述专利以全文引用的方式并入。发光和主体材料的实例公开于汤普森(Thompson)等人的美国专利第6,303,238号中,所述专利以全文引用的方式并入。经n掺杂的电子传输层的实例是以1:1的摩尔比掺杂有Li的BPhen,如美国专利申请公开第2003/
0230980号中所公开,所述公开案以全文引用的方式并入。以全文引用的方式并入的美国专利第5,703,436号和第5,707,745号公开了阴极的实例,所述阴极包括具有含上覆的透明、导电、溅镀沉积的ITO层的金属(如Mg:Ag)薄层的复合阴极。阻挡层的理论和使用更详细地描述于美国专利第6,097,147号和美国专利申请公开第2003/0230980号中,所述专利以全文引用的方式并入。注入层的实例提供于美国专利申请公开第2004/0174116号中,其以全文引用的方式并入。保护层的描述可以见于美国专利申请公开第2004/0174116号中,其以全文引用的方式并入。
[0027] 图2展示倒置式OLED 200。所述装置包括衬底210、阴极215、发射层220、空穴传输层225和阳极230。装置200可以通过按顺序沉积所述层来制造。因为最常见OLED配置具有安置于阳极上方的阴极,并且装置200具有安置于阳极230下的阴极215,所以装置200可以被称为“倒置式”OLED。可以在装置200的对应层中使用与关于装置100所述的那些材料类似的材料。图2提供如何可以从装置100的结构省去一些层的一个实例。
[0028] 图1和2中所说明的简单分层结构借助于非限制性实例提供,并且应理解本发明的实施例可以与各种其它结构结合使用。所描述的具体材料和结构本质上是示范性的,并且可以使用其它材料和结构。可以通过以不同方式组合所述的各种层来获得功能性OLED,或可以基于设计、性能和成本因素完全省略各层。也可以包括未具体描述的其它层。可以使用除具体描述的材料以外的材料。尽管本文中所提供的许多实例将各种层描述为包括单一材料,但应理解,可以使用材料的组合,如主体和掺杂剂的混合物,或更一般来说,混合物。此外,所述层可以具有各种子层。本文中给予各种层的名称并不意图具有严格限制性。举例来说,在装置200中,空穴传输层225传输空穴并且将空穴注入到发射层220中,并且可以被描述为空穴传输层或空穴注入层。在一个实施例中,可以将OLED描述为具有安置于阴极与阳极之间的“有机层”。这一有机层可以包含单个层,或可以进一步包含如例如关于图1和2所述的不同有机材料的多个层。
[0029] 还可以使用未具体描述的结构和材料,例如包含聚合材料的OLED(PLED),例如弗兰德(Friend)等人的美国专利第5,247,190号中所公开,所述专利以全文引用的方式并入。借助于另一实例,可以使用具有单个有机层的OLED。OLED可以堆叠,例如如在以全文引用的方式并入的福利斯特(Forrest)等人的美国专利第5,707,745号中所述。OLED结构可以偏离图1和2中所说明的简单分层结构。举例来说,衬底可以包括有角度的反射表面以改进出耦(out-coupling),例如如在福利斯特等人的美国专利第6,091,195号中所述的台式结构,和/或如在布尔维克(Bulovic)等人的美国专利第5,834,893号中所述的凹点结构,所述专利以全文引用的方式并入。
[0030] 在本文中所公开的一些实施例中,发射层或材料,如图1-2中分别所示的发射层135和发射层220,可以包括量子点。除非有明确相反的说明或根据所属领域的技术人员的理解依照情形指示,否则如本文中所公开的“发射层”或“发射材料”可以包括有机发射材料和/或含有量子点或等效结构的发射材料。此类发射层可以仅包括转换各别发射材料或其它发射体所发射的光的量子点材料,或其还可以包括各别发射材料或其它发射体,或其本身可以通过施加电流而直接发光。类似地,变色层、彩色滤光片、上转换或下转换层或结构可以包括含有量子点的材料,但此类层可以不视为如本文中所公开的“发射层”。一般来说,“发射层”或材料是如下“发射层”或材料:发射初始光,所述初始光可以通过另一层(如彩色滤光片或其它变色层)改变,所述另一层本身在装置内不发射初始光,但可以再发射光谱内容不同(基于发射层所发射的初始光)的改变光。
[0031] 除非另外规定,否则可以通过任何合适的方法来沉积各个实施例的层中的任一个。对于有机层,优选方法包括热蒸发、喷墨(如以全文引用的方式并入的美国专利第6,
013,982号和第6,087,196号中所述)、有机气相沉积(OVPD)(如以全文引用的方式并入的福利斯特等人的美国专利第6,337,102号中所述)和通过有机蒸气喷射印刷(OVJP)的沉积(如以全文引用的方式并入的美国专利第7,431,968号中所述)。其它合适的沉积方法包括旋涂和其它基于溶液的工艺。基于溶液的工艺优选在氮气或惰性气氛中进行。对于其它层,优选的方法包括热蒸发。优选的图案化方法包括通过掩模的沉积、冷焊(如以全文引用的方式并入的美国专利第6,294,398号和第6,468,819号中所述)和与例如喷墨和OVJD的沉积方法中的一些方法相关联的图案化。还可以使用其它方法。可以将待沉积的材料改性以使其与具体沉积方法相适合。举例来说,可以在小分子中使用支链或非支链并且优选含有至少3个碳的例如烷基和芳基的取代基来增强其经受溶液处理的能力。可以使用具有20个或更多个碳的取代基,并且3到20个碳是优选范围。具有不对称结构的材料可以比具有对称结构的材料具有更好的溶液可处理性,因为不对称材料可能具有更低的再结晶倾向性。可以使用树枝状聚合物取代基来增强小分子经受溶液处理的能力。
[0032] 根据本发明实施例制造的装置可以进一步任选地包含阻挡层。阻挡层的一个用途是保护电极和有机层免受暴露于包括水分、蒸气和/或气体等的环境中的有害物质的损害。阻挡层可以沉积在衬底、电极上,沉积在衬底、电极下或沉积在衬底、电极旁,或沉积在装置的任何其它部分(包括边缘)上。阻挡层可以包含单个层或多个层。阻挡层可以通过各种已知的化学气相沉积技术形成,并且可以包括具有单一相的组合物和具有多个相的组合物。
任何合适的材料或材料组合都可以用于阻挡层。阻挡层可以并有有无机化合物或有机化合物或两者。优选的阻挡层包含聚合材料与非聚合材料的混合物,如以全文引用的方式并入本文中的美国专利第7,968,146号、PCT专利申请第PCT/US2007/023098号和第PCT/US2009/
042829号中所述。为了被视为“混合物”,构成阻挡层的前述聚合材料和非聚合材料应在相同反应条件下沉积和/或同时沉积。聚合材料与非聚合材料的重量比可以在95:5到5:95范围内。聚合材料和非聚合材料可以由同一前体材料产生。在一个实例中,聚合材料与非聚合材料的混合物基本上由聚合硅和无机硅组成。
[0033] 根据本发明的实施例而制造的装置可以并入到多种多样的电子组件模块(或单元)中,所述电子组件模块可以并入到多种电子产品或中间组件中。所述电子产品或中间组件的实例包括可以为终端用户产品制造商所利用的显示屏、照明装置(如离散光源装置或照明面板)等。所述电子组件模块可以任选地包括驱动电子装置和/或电源。根据本发明的实施例而制造的装置可以并入到多种多样的消费型产品中,所述消费型产品具有一或多个电子组件模块(或单元)并入于其中。公开一种包含OLED的消费型产品,所述OLED在OLED中的有机层中包括本公开的化合物。所述消费型产品应包括含一或多个光源和/或某种类型的视觉显示器中的一或多个的任何种类的产品。所述消费型产品的一些实例包括平板显示器、计算机监视器、医疗监视器、电视机、告示牌、用于内部或外部照明和/或发信号的灯、平视显示器、全透明或部分透明的显示器、柔性显示器、激光打印机、电话、蜂窝电话、平板电脑、平板手机、个人数字助理(PDA)、可佩戴装置、膝上型计算机、数码相机、摄像机、取景器、微型显示器(对角线小于2英寸的显示器)、3-D显示器、虚拟现实或增强现实显示器、交通工具、包含多个平铺在一起的显示器的视频墙、剧院或体育馆屏幕,和指示牌。可以使用各种控制机制来控制根据本发明而制造的装置,包括无源矩阵和有源矩阵。意图将所述装置中的许多装置用于对人类来说舒适的温度范围中,例如18℃到30℃,并且更优选在室温下
(20-25℃),但可以在这一温度范围外(例如-40℃到+80℃)使用。
[0034] 本文所述的材料和结构可以应用于除OLED以外的装置中。举例来说,如有机太阳能电池和有机光电检测器的其它光电装置可以采用所述材料和结构。更一般来说,如有机晶体管的有机装置可以采用所述材料和结构。
[0035] 在一些实施例中,所述OLED具有一或多种选自由以下组成的群组的特征:柔性、可卷曲、可折叠、可拉伸和弯曲。在一些实施例中,所述OLED是透明或半透明的。在一些实施例中,所述OLED进一步包含包括碳纳米管的层。
[0036] 在一些实施例中,所述OLED进一步包含包括延迟荧光发射体的层。在一些实施例中,所述OLED包含RGB像素排列或白色加彩色滤光片像素排列。在一些实施例中,所述OLED是移动装置、手持式装置或可佩戴装置。在一些实施例中,所述OLED是对角线小于10英寸或面积小于50平方英寸的显示面板。在一些实施例中,所述OLED是对角线为至少10英寸或面积为至少50平方英寸的显示面板。在一些实施例中,所述OLED是照明面板。
[0037] 在发射区域的一些实施例中,发射区域进一步包含主体。
[0038] 在一些实施例中,所述化合物可以是发射掺杂剂。在一些实施例中,所述化合物可以经由磷光、荧光、热激活延迟荧光(即TADF,也称为E型延迟荧光)、三重态-三重态湮灭或这些过程的组合产生发射。
[0039] 本文所公开的OLED可以并入到消费型产品、电子组件模块和照明面板中的一或多种中。有机层可以是发射层,并且化合物在一些实施例中可以是发射掺杂剂,而化合物在其它实施例中可以是非发射掺杂剂。
[0040] 所述有机层还可以包括主体。在一些实施例中,两种或更多种主体是优选的。在一些实施例中,所用的主体可以是在电荷传输中起极小作用的a)双极,b)电子传输,c)空穴传输,或d)宽带隙材料。在一些实施例中,主体可以包括金属络合物。所述主体可以是无机化合物。
[0041] 与其它材料的组合
[0042] 本文中描述为适用于有机发光装置中的特定层的材料可以与装置中存在的多种其它材料组合使用。举例来说,本文所公开的发射掺杂剂可以与可能存在的广泛多种主体、传输层、阻挡层、注入层、电极和其它层结合使用。下文描述或提及的材料是可以与本文所公开的化合物组合使用的材料的非限制性实例,并且所属领域的技术人员可以容易地查阅文献以鉴别可以组合使用的其它材料。
[0043] 本文所公开的不同发射层和非发射层和布置可以使用不同材料。合适材料的实例公开于美国专利申请公开第2017/0229663号中,所述公开以全文引用的方式并入。
[0044] 导电性掺杂剂:
[0045] 电荷传输层可以掺杂有导电性掺杂剂以大体上改变其电荷载体密度,这转而将改变其导电性。导电性通过在基质材料中生成电荷载体而增加,并且取决于掺杂剂的类型,还可以实现半导体的费米能级(Fermi level)的变化。空穴传输层可以掺杂有p型导电性掺杂剂,并且n型导电性掺杂剂用于电子传输层中。
[0046] HIL/HTL:
[0047] 本发明中所用的空穴注入/传输材料不受特别限制,并且可以使用任何化合物,只要化合物通常用作空穴注入/传输材料即可。
[0048] EBL:
[0049] 电子阻挡层(EBL)可以用以减少离开发射层的电子和/或激子的数目。与缺乏阻挡层的类似装置相比,在装置中存在此类阻挡层可以产生大体上较高的效率和/或较长的寿命。此外,可以使用阻挡层来将发射限制于OLED的所需区域。在一些实施例中,与最接近EBL界面的发射体相比,EBL材料具有较高LUMO(较接近真空能级)和/或较高三重态能量。在一些实施例中,与最接近EBL界面的主体中的一或多种相比,EBL材料具有较高LUMO(较接近真空能级)和/或较高三重态能量。在一个方面中,EBL中所用的化合物含有与下文所述的主体中的一个所用相同的分子或相同的官能团。
[0050] 主体:
[0051] 本发明的有机EL装置的发光层优选地至少含有金属络合物作为发光材料,并且可以含有使用金属络合物作为掺杂剂材料的主体材料。主体材料的实例不受特别限制,并且可以使用任何金属络合物或有机化合物,只要主体的三重态能量大于掺杂剂的三重态能量即可。任何主体材料可以与任何掺杂剂一起使用,只要满足三重态准则即可。
[0052] 用作主体的金属络合物的实例优选具有以下通式:
[0053]
[0054] 其中Met是金属;(Y103-Y104)是双齿配体,Y103和Y104独立地选自C、N、O、P和S;L101是另一配体;k'是1到可以与金属连接的最大配体数的整数值;并且k'+k"是可以与金属连接的最大配体数。
[0055] 在一个方面中,金属络合物是:
[0056]
[0057] 其中(O-N)是具有与O和N原子配位的金属的双齿配体。
[0058] 在另一方面中,Met选自Ir和Pt。在另一方面中,(Y103-Y104)是碳烯配体。
[0059] 在一个方面,主体化合物含有选自以下的以下群组中的至少一个:由例如以下的芳香族烃环状化合物组成的群组:苯、联苯、联三苯、三亚苯、四亚苯、萘、蒽、萉、菲、芴、芘、苝和薁;由例如以下的芳香族杂环化合物组成的群组:二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚并咔唑、吡啶基吲哚、吡咯并二吡啶、吡唑、咪唑、三唑、噁唑、噻唑、噁二唑、噁三唑、二噁唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、噁嗪、噁噻嗪、噁二嗪、吲哚、苯并咪唑、吲唑、吲噁嗪、苯并噁唑、苯并异噁唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘啶、酞嗪、喋啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩噁嗪、苯并呋喃并吡啶、呋喃并二吡啶、苯并噻吩并吡啶、噻吩并二吡啶、苯并硒吩并吡啶和硒吩并二吡啶;以及由2到10个环状结构单元组成的群组,所述环状结构单元是选自芳香族烃环基和芳香族杂环基的相同类型或不同类型的基团并且直接或经由氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪族环基中的至少一个彼此键结。每个基团中的每个选项可以未被取代或可以被选自由以下组成的群组的取代基取代:氘、卤素、烷基、环烷基、杂烷基、杂环烷基、芳烷基、烷氧基、芳氧基、氨基、硅烷基、烯基、环烯基、杂烯基、炔基、芳基、杂芳基、酰基、羧酸、醚、酯、腈、异腈、硫基、亚磺酰基、磺酰基、膦基和其组合。
[0060] 在一个方面中,主体化合物在分子中含有以下基团中的至少一个:
[0061]
[0062]
[0063] 其中R101选自由以下组成的群组:氢、氘、卤素、烷基、环烷基、杂烷基、杂环烷基、芳烷基、烷氧基、芳氧基、氨基、硅烷基、烯基、环烯基、杂烯基、炔基、芳基、杂芳基、酰基、羧酸、醚、酯、腈、异腈、硫基、亚磺酰基、磺酰基、膦基和其组合,且当其是芳基或杂芳基时,其具有与上文所提及的Ar类似的定义。k是0到20或1到20的整数。X101到X108独立地选自C(包括CH)或N。Z101和Z102独立地选自NR101、O或S。
[0064] 可以与本文中所公开的材料组合用于OLED中的主体材料的非限制性实例与公开那些材料的参考文献一起例示如下:EP2034538、EP2034538A、EP2757608、JP2007254297、KR20100079458、KR20120088644、KR20120129733、KR20130115564、TW201329200、
US20030175553、US20050238919、US20060280965、US20090017330、US20090030202、
US20090167162、US20090302743、US20090309488、US20100012931、US20100084966、
US20100187984、US2010187984、US2012075273、US2012126221、US2013009543、
US2013105787、US2013175519、US2014001446、US20140183503、US20140225088、
US2014034914、US7154114、WO2001039234、WO2004093207、WO2005014551、WO2005089025、WO2006072002、WO2006114966、WO2007063754、WO2008056746、WO2009003898、
WO2009021126、WO2009063833、WO2009066778、WO2009066779、WO2009086028、
WO2010056066、WO2010107244、WO2011081423、WO2011081431、WO2011086863、
WO2012128298、WO2012133644、WO2012133649、WO2013024872、WO2013035275、
WO2013081315、WO2013191404、WO2014142472、US20170263869、US20160163995、US9466803,[0065]
[0066]
[0067]
[0068]
[0069]
[0070]
[0071] 主体还可以包含金属络合物。金属络合物可以包括以下配体中的至少一种:
[0072]
[0073]
[0074] 其中Y1到Y13各自独立地选自由碳和氮组成的群组;Y'选自由以下组成的群组:BRe、NRe、PRe、O、S、Se、C=O、S=O、SO2、CReRf、SiReRf和GeReRf;其中Re和Rf任选地稠合或连接形成环;Ra、Rb、Rc和Rd各自可以独立地表示对其相关环的零次取代、单次取代或直至所允许最多次取代;各Ra、Rb、Rc、Rd、Re和Rf独立地是氢或选自由以下组成的群组的取代基:氘、卤基、烷基、环烷基、杂烷基、芳烷基、烷氧基、芳氧基、氨基、硅烷基、烯基、环烯基、杂烯基、炔基、芳基、杂芳基、酰基、羰基、羧酸、酯、腈、异腈、硫基、亚磺酰基、磺酰基、膦基和其组合;并且Ra、Rb、Rc和Rd的两个相邻取代基可以稠合或连接形成环或形成多齿配体,只要化学上可行。
[0075] 金属络合物还可以包括以下配体中的至少一种:
[0076]
[0077]
[0078]
[0079] 其中Ra、Rb和Rc的定义都与上述相同,并且其中的每一个可以与另一个形成环,只要化学上可行。
[0080] 所述主体还可以包括以下中的一或多种:
[0081]
[0082]
[0083] 和其组合。
[0084] HBL:
[0085] 空穴阻挡层(HBL)可以用以减少离开发射层的空穴和/或激子的数目。与缺乏阻挡层的类似装置相比,此类阻挡层在装置中的存在可以产生大体上较高的效率和/或较长的寿命。此外,可以使用阻挡层来将发射限制于OLED的所需区域。在一些实施例中,与最接近HBL界面的发射体相比,HBL材料具有较低HOMO(距真空能级较远)和/或较高三重态能量。在一些实施例中,与最接近HBL界面的主体中的一或多种相比,HBL材料具有较低HOMO(距真空能级较远)和/或较高三重态能量。
[0086] ETL:
[0087] 电子传输层(ETL)可以包括能够传输电子的材料。电子传输层可以是固有的(未经掺杂的)或经掺杂的。可以使用掺杂来增强导电性。ETL材料的实例不受特别限制,并且可以使用任何金属络合物或有机化合物,只要其通常用以传输电子即可。
[0088] 电荷产生层(CGL)
[0089] 在串联或堆叠OLED中,CGL对性能起基本作用,其由分别用于注入电子和空穴的经n掺杂的层和经p掺杂的层组成。电子和空穴由CGL和电极供应。CGL中消耗的电子和空穴由分别从阴极和阳极注入的电子和空穴再填充;随后,双极电流逐渐达到稳定状态。典型CGL材料包括传输层中所用的n和p导电性掺杂剂。
[0090] 利用磷光发射体实现从三重激发态发射的OLED装置典型地展现1μs或更长的相对较长激发态寿命(瞬时)。根据本公开,已发现激子驻留在发射体分子上的时间量与总体装置老化速率相关。因此,希望减少瞬时寿命以获得寿命改善的OLED装置。
[0091] 实现瞬时寿命减少的一种方式是通过将增强层引入OLED堆叠并且使发射体定位于增强层的阈值距离内而得到的OLED装置架构。如本文所用,此阈值距离定义为距增强层的距离,此时,总辐射衰减速率常数等于总非辐射衰减速率常数。当发射层的至少一部分(最多且包括全部)远离增强层的距离不超过阈值距离时(垂直于增强层贯穿有机堆叠测
量),发射层被视为在增强层的阈值距离内。当发射体(例如本文公开的有机发射材料和层)放在光子状态密度相对于真空增加的环境中时,发射体的发射速率增加。这称为珀塞尔效应(Purcell effect)。这种增强的发射和非辐射速率使得发射体保持激发态的时间长度减少,从而使发射体稳定且使装置(例如并有发射体的OLED)的老化速率降低。一些OLED架构是通过使用具有等离子体材料的增强层来利用此效应,所述等离子体材料展现与发射材料非辐射耦合的表面等离子体共振,从而允许激发态能量从发射材料转移到表面等离子体偏振子的非辐射模式。此类装置描述于例如美国专利第9,960,386号中,所述专利以全文引用的方式并入本文中。
[0092] 双曲超材料和等离子体材料因其具有宽频带光子态而非常适于增强OLED中的珀塞尔效应。就指定的电流密度来说,相对于不具有增强层的装置,增加的辐射衰减速率常数使得OLED装置的发射层内的激子密度降低。这减少依赖于高亮度下的两粒子碰撞(例如三重态-三重态湮灭和三重态-电荷湮灭)的损耗机制,从而改善高亮度下的OLED性能。就指定的操作电流密度来说,发射体的发射速率常数的增加还将减少发射体在激发态中耗费的平均时间,从而减少OLED中储存的总能量。这又引起分子老化成非发光物质的速率降低,从而使OLED装置的寿命较长。
[0093] 利用此等效应实现瞬时寿命减少的通用装置结构的实例展示于图3中。所述装置包括安置于两个电极之间的OLED堆叠320,例如相对于图1和2所述。所述装置包括如美国专利第9,960,386号中所述的增强层310,所述增强层还可以是OLED堆叠320的电极或可以是单独的层。OLED堆叠内的磷光发射层322位于增强层的阈值距离325处或以内,以增强珀塞尔效应。增强层310典型地包括展现表面等离子体共振的等离子体材料,并且磷光发射体
322安置于增强层310的阈值距离内,所述阈值距离等于磷光发射材料的总辐射衰减速率常数等于磷光发射材料的总非辐射衰减速率常数时的距离,如先前所公开。增强层中的等离子体材料与磷光发射材料非辐射地耦合且将激发态能量从磷光发射材料转移到增强层的
表面等离子体偏振子的非辐射模式。如先前所公开,增强层增加磷光发射材料的状态密度。
此状态增加尤其可以在光谱范围内发生,所述光谱范围可以设计成与磷光发射体的发射范围重叠。具体来说,希望状态密度增加的光谱范围包括磷光发射体的峰值发射波长。如所公开且如图3中所示的装置结构可以实现200ns或更少的磷光瞬时寿命。
[0094] 增强层可以包括一或多种材料,例如美国专利第9,960,386号所述的那些材料,包括(但不限于)Au、Ag、Mg、Al、Ir、Pt、Ni、Cu、W、Ta、Fe、Cr、Ga、Rh、Ti、Ca、Ru、Pd、In、Bi、小有机分子、聚合物、SiO2、TiO2、Al2O3、绝缘氮化物、Si、Ge,和其堆叠或合金。
[0095] 增强层中储存的所得能量可以再转变成光以再获得装置效率,但这并非实现OLED装置稳定性增强所必需的,如本文所公开。更具体地说,如本文所公开的OLED装置的恒定电流密度寿命将因瞬时激发态寿命减少而增加,瞬时激发态寿命减少是图3所示的架构引起。已发现,磷光发射体的瞬时寿命减少到200ns以下时,装置稳定性显著增强。举例来说,可以使装置寿命(LT95)增加20倍或更多。另外,已发现,发射层相对接近于增强层放置(例如在如本文所公开的阈值距离内)能够使此激发态瞬时寿命不超过200ns。然而,可以利用其它技术实现此类瞬时寿命而不需要增强层,例如利用如本文所公开的特定分子结构。如本文所公开的三重态发射发射层或材料可以实现200ns或更少的减少的瞬时寿命。
[0096] 可利用如图3中所示的架构实现的减少的瞬时寿命适用于所有波长光谱的发射体,如图4-6所示。具体地说,图4展示峰值波长为约475nm的磷光发射体的OLED稳定性增强;
图6展示峰值波长为约525nm的磷光发射体的稳定性增强;并且图7展示峰值波长为约465nm的磷光发射体的稳定性增强。另外,图5中所示的475nm波长磷光发射体的EL瞬时测量结果表明,激发态寿命的某种减少能够通过装置工程改造来实现。更一般来说,磷光发射体的发射峰可以在440nm到500nm、500nm到550nm、555nm到640nm或640nm到1000nm范围内。在一些情况下,发射层可以包括多种磷光发射体,其中的每一种可以具有不同范围内的不同发射峰,或者发射体中的一或多种可以具有相同范围内的发射峰。
[0097] 如本文所公开的磷光发射材料可以是有机材料。其可以包括含有Ru、Os、Ir、Pd、Pt、Cu、Ag、Au或其组合的金属络合物。其可以包括下式的金属络合物
[0098]
[0099] 其中Met是金属;(Y103-Y104)是双齿配体,Y103和Y104独立地选自C、N、O、P和S;L101是另一配体;k'是1到可以与所述金属连接的配体的最大数目的整数值;并且k'+k"是可以与所述金属连接的配体的最大数目。
[0100] 在一些情况下,磷光材料可以包括主体和一或多种掺杂剂。可以使用本文中描述为适用作主体的任何材料,包括(但不限于)芳香族烃环状化合物;由芳香族杂环化合物组成的群组;和由2到10个环状结构单元组成的群组,所述结构单元是与选自芳香族烃环基和芳香族杂环基的类型相同或不同的基团并且彼此直接键结或经由氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪族环基中的至少一个键结。
[0101] 可以利用其它技术,替代地或与如图3中所示的布置结合来加快磷光发射体的瞬时衰减。举例来说,发射体分子可以设计成通过状态混合使衰减时间最小化,并且自旋轨道耦合还可以产生快速衰减时间。
[0102] 或者或另外,可以利用其它结构组分增强装置效率,同时维持短瞬时寿命。举例来说,可使用出耦层。在一些情况下,电极或其它层可以使表面等离子体从装置出耦。此类耦出层可以包括任何已知组分或结构,包括(但不限于)纳米粒子、纳米粒子阵列,或其它结构,例如纳米芯片天线。
[0103] 应理解,本文所述的各种实施例仅借助于实例,并且并不意图限制本发明的范围。举例来说,可以在不背离本发明的精神的情况下用其它材料和结构取代本文所述的许多材料和结构。如所要求的本发明因此可以包括本文所述的具体实例和优选实施例的变化形
式,如所属领域的技术人员将显而易见。应理解,关于本发明为何起作用的各种理论并不意图是限制性的。