技术领域
[0001] 本发明涉及余热回收利用技术领域,具体涉及一种余热利用方法。
相关背景技术
[0002] 余热是指生产过程中由各种热能转换设备、用能设备、化学反应设备及生产的高温工件产生而未被利用的热能。在纺织印染、电镀加工、化工制药、印刷烘干、煤泥烘干、铸造、电解铝生产等工业领域存在大量需要回收利用的余热,现在的加工厂对余热利用仅限于换热器回收,但是,换热器回收的工作效率低,对于异形工件等高温工件的回收仍处于基本空白的状态,现在这部分高温异形工件均通过自然冷却的方式处理。如果通过回收可以充分利用这部分能量,将极大地减少工业能源损耗。同时余热回收利用是提高经济性、节约燃料的一条重要途径。
[0003] 基于上述问题,申请人对余热利用展开了研发,以通过利用高温工件的余热来进行发电、加热水、生产说蒸汽等,以提高余热利用率,减少能源浪费。
具体实施方式
[0040] 下面通过具体实施方式进一步详细说明:
[0041] 说明书附图中的附图标记包括:机械泵1、吸热组件2、电磁泵3、加热器4、斯特林电机5、换热器6、储液箱7、内筒101、外筒102、凹槽103、散热孔104、吸热管105、安装孔106、抱箍107、安装耳108、支撑管109、接料板110、顶盖200、凸起201、空腔202、盖板203、导热板300、减速电机301、导杆302、轴承座303、不完全齿轮304、端面齿轮305、气囊306、排气孔
307、出气单向阀308。
[0042] 实施例一:
[0043] 一种余热利用方法,包括以下步骤:
[0044] S1:使用一种余热利用系统,如附图1和附图2所示,包括用于驱动热交换介质循环的泵组件,本实施例中泵组件包括机械泵1和电磁泵3,机械泵1的进液口和出液口均设置有加热组件,加热组件为电热棒,电热棒的型号为:DN40,电热棒电连接有电源。
[0045] 还包括吸热组件2、耗能组件和储液组件,本实施例中,吸热组件2包括外筒102和设置在外筒102内的内筒101,内筒101与外筒102之间设置有供热交换介质流动的通道。具体的,机械泵1与通道连通,电磁泵3与空腔连通。
[0046] 储液组件为储液箱7,储液箱7与机械泵1连通。耗能组件包括斯特林电机5和换热器6,具体的换热器6分别与储液箱7、斯特林电机5连通。斯特林电机5与电磁泵3之间连通有辅热组件,辅热组件包括加热容器和固定在加热容器上的加热器4,加热器4的型号为:DN125X800,具体的,斯特林电机5上固定有储液容器,斯特淋电机的吸热片伸入到储液容器内,储液容器分别与换热器6、加热容器连通。加热器4与电磁泵3之间设置有温敏传感器,型号为:SIN-WZP-PT100,温敏传感器电连接有安装在加热器4上的控制器,控制器型号为:
900U,控制器与加热器4电连接,且控制器控制加热器4的启闭,温敏传感器位于电磁泵3的出液口处。本实施例中的连通均使用现有的管道,此处不再赘述。
[0047] 本实施例中热交换介质为液态金属,是由质量分数为镓20%、铟30%、铋19%、铝5%、铁3%、镁5%和锡18%组成的合金,该液态金属的熔点为40℃。
[0048] 将机械泵1、吸热组件2、电磁泵3、加热器4、斯特林电机5、换热器6、储液箱7依次连通,且构成一个循环回路。
[0049] S2:本实施例中以电解铝残极为例,将粘附有电解铝残极的母线放置于内筒101内,由于本方案的吸热组件2为筒状,可容纳电解铝残极等异形结构。
[0050] S3:初始时,液态金属在常温下容易凝固,因此先启动电热泵对液态金属进行加热,再启动机械泵1对液态金属进行驱动。放入电解铝残极之后,启动电磁泵3,机械泵1将液态金属送入到通道内,在通道内的液态金属对电解铝残极进行热交换,然后电磁泵3将吸热的高温液态金属送入到加热容器内,再进入到储液容器内,再进入到换热器6内。
[0051] S4:高温的液态金属在储液容器内与加热片进行热交换,斯特林发电机吸收大量的热从而工作发电,本实施例中斯特林发电机的工作温度在400℃,并且经过换热器6。斯特林发电机消耗热能过后,液态金属残余部分热能,换热器6对残余的热能进行利用,例如:加热水、产生水蒸汽等。经过长时间换热,电解铝残极的温度会逐渐降低,因此,液态金属的温度也会逐渐降低,且液态金属的温度不足以使得斯特林电机5工作。此时,温敏传感器检测到液态金属的温度,例如:200℃,温度传感器会将温度信号发送给控制器,控制器会控制加热器4工作,加热器4对加热容器内的液态金属进行加热,如此升高液态金属的温度,从而使得斯特林发电机持续工作。操作人员,发现加热器4工作时,对内筒101内的电解铝残极进行更换。
[0052] S5:在机械泵1和电磁泵3的作用下,余热被利用过后的液态金属,回流到储液箱7内,再通过机械泵1送入到通道内,通道内的液态金属再次对电解铝残极吸热,如此完成液态金属的循环。
[0053] S6:重复以上步骤循环。
[0054] 实施例二:
[0055] 实施例二与实施例一的不同之处在于,如附图2、附图3、附图4和附图5所示,吸热组件2设置在机架上,内筒101的外壁上开设有呈螺旋状的凹槽103,且凹槽103的横截面呈半圆形,如图3,在内筒101的内壁上开设有多个与凹槽103位置对应且连通的散热孔104,且散热孔104为通孔,在凹槽103内卡紧有供热交换介质循环的吸热管105,吸热管105位于通道内,在外筒102的上部和下部均开设有供吸热管105通过的安装孔106。
[0056] 在内筒101外壁上设有多个固定吸热管105的锁紧机构,其中锁紧机构包括呈半环形的抱箍107和螺栓,抱箍107的两端向外(朝向抱箍107凸起一侧)弯折形成安装耳108,在安装耳108上开设有定位孔Ⅰ,在内筒101外壁上设有一组与定位孔位置对应的螺纹孔Ⅰ,一组螺纹孔Ⅰ中的两个螺纹孔Ⅰ分别位于凹槽103上下两侧,将螺栓装入定位孔Ⅰ和螺纹孔Ⅰ内,从而实现将抱箍107固定在吸热管105的外部。
[0057] 在吸热组件2的底部纵横交错分布有多根与吸热管105连通的支撑管109,支撑管109可以固定在机架上,也可以通过其他方式固定在吸热组件2下方,支撑管109为不锈钢的硬管,在支撑管109下方还设有水平滑动连接在机架上的接料板110,该接料板110用于收集从待吸热工件上掉落的杂质物。
[0058] 在吸热组件2的顶部设有盖合吸热组件2的顶盖200,本实施例中顶盖200呈圆形,如图4所述,在顶盖200底部的中心处设有呈倒锥形的凸起201,在顶盖200内设有顶部敞口的空腔202,空腔202同样呈倒锥形,顶盖200上可拆卸连接有将空腔202封闭的盖板203,具体设置为:在盖板203上设有定位孔Ⅱ,在顶盖200上设有与定位孔Ⅱ位置对应的螺纹孔Ⅱ,将螺栓装入定位孔Ⅱ与螺纹孔Ⅱ实现盖板203在顶盖200上的安装,使用时,空腔202内装有保温材料,本实施例中保温材料选用玻璃棉;在顶盖200上还设有便于行车吊装的吊耳。
[0059] S2中,以电解铝残极为例,利用车间中的行车(或其他方式)将待降温的电解铝残极放置在支撑管109上,后通过吊耳将顶盖200盖合在吸热组件2的顶部,工件放入时与支撑管109轻微碰撞,使得工件上残留的碎渣经支撑管109之间的间隙掉落在接料板110上,高温工件使其周围的空气被加热,由于热气流具有上升的特性,热气流不断向上流动。
[0060] 当热气流上升至靠近顶盖200附近时,由于凸起201呈倒锥形,因此热气流会沿着凸起201的外周向靠近内筒101一侧流动,热气流经散热孔104进入凹槽103,其热量被吸热管105内的液态金属带走。
[0061] 实施例三:
[0062] 实施例三与实施例一的不同之处在于,如图6所示,在顶盖200的底部沿着凸起201均布有多个导热单元,导热单元用于将顶盖200底部的热量分散至吸热管105处,其中导热单元包括导热板300和驱动导热板300绕着水平轴线往复摆动的驱动机构,导热板300位于凸起201与内筒101之间,本实施例中驱动机构包括减速电机301和导杆302,减速电机301固定在顶盖200的顶部,且顶盖200上设有供减速电机301的输出轴穿过的轴孔,在减速电机301的驱动轴上同轴固定有位于顶盖200下方的不完全齿轮304,导杆302水平转动连接在顶盖200的底部,具体为:在顶盖200的底部固定有轴承座303,导杆302与轴承座303之间通过轴承连接,在导杆302的端部同轴固定有与不完全齿轮304啮合的端面齿轮305,本实施例中端面齿轮305与不完全齿轮304上的凸齿均为直齿,导杆302上设有固定在顶盖200底部的扭簧,导热板300固定在导杆302上。
[0063] 当不完全齿轮304与端面齿轮305处于未啮合状态时,导热板300的低端朝向凸起201一侧倾斜,工作时,减速电机301驱动不完全齿轮304慢速转动,当不完全齿轮304与端面齿轮305啮合时,导杆302产生转动,使得导热板300向远离凸起201一侧摆动,同时扭簧蓄能,当不完全齿轮304与端面齿轮305脱离啮合时,扭簧释放能量,使得导杆302快速反向转动,导热板300迅速复位,从而实现导热板300的往复摆动。
[0064] 在导热板300与凸起201之间固定有多个气囊306,气囊306的一侧粘接在凸起201上,而气囊306的另一侧粘接在导热板300上,多个气囊306之间具有间隙,各气囊306上均设有进气单向阀,在导热板300上开设有多个连通气囊306内部的排气孔307,排气孔307相对于导热板300倾斜设置,即导热板300靠近凸起201时,排气孔307的中轴线呈竖直状态,在排气孔307内设有出气单向阀308,当气囊306的体积减小时,气囊306内部的气压增大,出气单向阀308打开,气囊306内部的气体排出,当气囊306的体积增大时,气囊306内部的气压减小,进气单向阀打开,气囊306外部的气体补入到气囊306内。
[0065] 由于热气流上升至顶盖200附近时,其中的大部分热量已被热交换介质吸收,温度大幅度下降,大约在100-150℃,因此本实施例中,气囊306、导热板300、导杆302等与热气流直接接触的机构全部选用耐高温的材料制成,如气囊可采用耐高温的硅橡胶制成,而导热板可采用铝合金板,导杆采用45钢制成。
[0066] S2中,以电解铝为例,将电解铝放置于内筒101过后,将顶盖200盖合在吸热组件2上之后,开启连接减速电机301的电源,使得位于吸热组件2内的导热板300往复摆动,当热气流上升至靠近顶盖200附近时,由于凸起201阻挡,热气流向凸起201四周流动,凸起201与导热板300之间气囊306的存在,气囊306对热气流有一定的阻挡作用,使得热气流向导热板300处流动,当导热板300远离凸起201一侧摆动时,给予热气流向内筒101的侧壁流动的推力,促使热气流快速与吸热管105内的热交换介质换热,降低热气流经顶盖200与外界换热的几率。
[0067] 当导热板300向远离凸起201一侧摆动时,气囊306拉伸其内部体积增大,内部气压减小,进气单向阀打开,外部的热气流进入到气囊306内部,而当导热板300向靠近凸起201一侧摆动时,挤压气囊306,使得气囊306体积缩小,其内部的气压增大,出气单向阀308打开,气囊306内部的热气经排气孔307排出,由于排气孔307的出口倾斜朝下,因此气囊306排出的气流给予靠近顶盖200的热气流向下的作用力,减缓热气流上升的速度,降低热气流经顶盖200与外界换热的几率,从而提高余热的回收效果。
[0068] 另外由于导热板300复位是通过扭簧释放能量驱动的,因此导热板300复位的速度较快,经排气孔307排出的气体流速较大,对其下方气流的作用力也会加大。
[0069] 以上的仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本发明所省略描述的技术、形状、构造部分均为公知技术。