[0112] HRV、P和R分别代表心率变化值、血压值和表皮导电阻值,k1,k2,k3为加权系数,分别体现心率变化、血压和表皮导电性对情绪紧张程度度量值的贡献,E1(HRV)为根据心率变化计算出的情绪紧张程度,E2(P)为根据血压变化计算出的情绪紧张程度,E3(R)为根据皮肤导电性变化计算出的情绪紧张程度,t为当前时刻,t-1为当前时刻的前一时刻,t-2为当前时刻的前两时刻, 为t-2时刻、t-1时刻与当前时刻的心率变化值之和,HRV(t-2)为t-2时刻的心率变化值,HRV(t-1)为t-1时刻的心率变化值,HRV(t)为当前时刻的心率变化值,H0为被测对象正常情绪状态下的心率值,P(t)为当前时刻的血压值,P(t-1)为t-1时刻的血压值,P0为被测对象在正常情绪状态下的血压值,A为被测对象预先测量的皮肤电阻参考值,R(t)为当前时刻皮肤电阻值;
[0113] 所述的脑电波感知模块3包括:
[0114] 脑电信号分类识别模块,用于对脑电信号进行分类和识别;
[0115] 多个脑电波传感器3-1,配置来在使用时检测佩戴所述脑电波检测装置的用户的脑电波,并产生脑电波信号;
[0116] 脑电波处理单元3-2,用于:将采集到的模拟脑电波信号进行放大和滤波处理得到0.5Hz-100Hz范围内的包括α波、β波、θ波和δ波的模拟脑电波信号;将模拟脑电波信号进行模数转换成数字脑电波信号后进行傅里叶变换分别得到α波、β波、θ波和δ波的傅里叶谱,将信号从空间域变换至频率域;对包括α波、β波、θ波和δ波的数字脑电波信号进行凯泽窗处理,经幅值分析、时间域分析和频率域分析得到脑电波信号的各项指标参数;
[0117] 电源管理模块3-3,配置来与所述多个脑电波传感器连接,并且检测来自所述多个脑电波传感器的脑电波信号;
[0118] 脑电波助眠单元3-4,包括枕头、枕头内的电场发生线圈、电源装置,枕头内置有振动传感器、脉冲放大转换电路、时钟发生电路、分频电路、频率控制电路、正弦波滤波器、脑电波滤波器、选择开关、驱动放大电路;所述的振动传感器将失眠患者辗转反侧运动转换成的电子脉冲输入到与之连接的脉冲放大转换电路一端,经其转换成控制信号后从另一端输入到与之连接的时钟发生电路;时钟发生电路一方面将标准秒脉冲信号输入到与之连接的分频电路一端,经分频电路另一端将分频出的浅睡眠和深睡眠脑电波振荡频率为0.4—9Hz的等宽脉冲信号输入到与之互连的频率控制电路;
[0119] 所述的体温感知模块4内置有非接触式红外温度传感器,该非接触式红外温度传感器分别与温差热电堆放大电路以及温度补偿及放大电路相连,温差热电堆放大电路以及温度补偿及放大电路相连分别连接到AD转换电路,所述的AD转换电路为一个多路AD转换电路,AD转换电路与主控电路相连,主控电路与显示电路以及报警电路相连;所述的非接触式红外温度传感器采用热电堆红外温度传感器实现对体温信号和环境温度信号即温差热电堆微弱的电压信号和电热调节器的热敏电阻信号的非接触检测;
[0120] 所述的坐姿感知模块5包括坐姿矫正器本体,在坐姿矫正器本体中安装有加速度计、张力传感器;
[0121] 所述的张力传感器包括测力杆、条状陶瓷片以及陶瓷固定座、张力信号处理模块;所述条状陶瓷片正面粘接测力杆,背面粘接弹性体陶瓷固定座;所述条状陶瓷片作为从陶瓷固定座到测力杆之间的力矩;
[0122] 所述的张力信号处理装置与所述的侧力杆和所述的条状陶瓷片连接,该张力信号处理装置包括两组张力应变片和压缩应变片组成的张力感应组件、内置信号处理器、两根测张辊、三根张力辊以及传感器安装座,所述传感器安装座上并排布置三根张力辊,在两两相邻的张力辊之间设有测张辊,三根张力辊所在直线与两根测张辊所在直线平行,所述测张辊上安装张力感应组件;
[0123] 所述条状陶瓷片为一力敏弹性体,该力敏弹性体正反面各设置两个应变电阻,同时通过力敏弹性体上设置的通孔将这四个应变电阻互联形成一个惠斯顿电桥;并通过激光修调系统将惠斯顿电桥调至零位;所述测力杆感知张力信号后,通过使力敏弹性体产生微量形变,从而使得整个张力传感器通过电桥输出与张力信号精密线性相关的毫伏级线性电压。
[0124] 进一步,所述的脑电波助眠单元3-4还将输出定时信号来控制与之连接的频率控制电路按设定的时间顺序定时工作,使频率控制电路将从分频电路输入的全部等宽脉冲信号转换为以每若干分钟为间隔,从浅睡眠脑电波振荡频率点9Hz开始,逐步降低频率到4Hz,并自动过渡到深睡眠脑电波振荡频率4Hz开始,逐步降低频率到0.4Hz的等宽脉冲信号输出,时钟发生电路还受脉冲放大转换电路发出的控制信号的触发控制,每触发一次就延长已设定的时间顺序的定时点延长若干分钟,从而使其控制的频率控制电路在该浅睡眠或深睡眠信号频点设定的工作时间延长若干分钟,从而使其控制的频率控制电路在该浅睡眠或深睡眠信号频点设定的工作时间延长若干分钟;频率控制电路一边将定时的、逐渐变化振荡频率的浅、深睡眠脑电波等宽脉冲信号输入到与之连接的选择开关一端,由选择开关决定连接正弦波滤波器还是脑电波滤波器,一边在引导失眠患者安然入睡后,发出关机信号给与之连接的电源装置控制端关闭电源关机;所述的正弦波滤波器或脑电波滤波器的另一端将滤波出的正弦波或模拟人类脑电波状信号输入到与之连接的驱动放大电路一端,驱动放大电路放大后从另一端输入到与之连接的电场发生线圈,驱动电场发生线圈形成模拟人类从浅睡眠脑电波到深睡眠脑电波的生物电场,从而达到无需药物治疗,就能使失眠患者摆脱失眠进入深沉睡眠的目的。
[0125] 进一步,所述的体温感知模块4内置有体温校准模块,该体温校准模块包括红外体温监测设备、校准数据处理中心、测温设备、环境参数监测设备、环境参数监测系统、红外体温监测系统;其中
[0126] (1)测温设备,用于采集耳道或者体表温度数据T0,并传输至校准数据处理中心;
[0127] (2)环境参数监测设备:用于采集环境相关信息,并将环境信息转化成电信号,传输至环境参数监测系统;
[0128] (3)环境参数监测系统,接收到采集到的电信号以后,通过数据处理,并换算成环境参数数据,并传输至校准数据处理中心;
[0129] (4)红外体表温度监测设备,用于采集步骤(1)中相同个体的体表红外信息,并将红外信息转化成电信号,传输至红外体温监测系统;
[0130] (5)红外体温监测系统,用于接收到红外体表温度监测设备传输过来的电信号,将电信号进行数据处理,换算成体表温度Ty传入校准数据处理中心;
[0131] (6)校准数据处理中心,用于将收集到的耳道温度或体表温度、环境参数、红外体表温度进行数据分析和处理,建立环境参数-体表温度-体温的校准参数曲线,将该曲线发送给中央处理器。
[0132] 进一步,所述脑电信号分类识别模块的脑电信号分类识别方法具体步骤为:
[0133] 步骤一,选取主试和次试,对5位实验者对应的EEG信号依次编号为EEG_data_al、EEG_data_aa、EEG_data_av、EEG_data_ay、EEG_data_aw,选定al实验者为主要被试,其他四位实验者为次要被试;
[0134] 步骤二,频域滤波,使用一个8~30Hz的带通滤波器,对采集的脑电数据进行滤波预处理,且此频率段有明显的ERD/ERS生理现象;
[0135] 步骤三,选取训练样本,对信号滤波之后,从主要实验者al的A类和B类EEG信号中分别选取11个EEG信号作为训练样本,然后从其他4位次要实验者的A类和B类EEG信号中分别选取10个EEG信号作为训练样本,则所有次试者的A类和B类训练样本总数均为40个;
[0136] 步骤四,分别求出主试者的A类和B类训练样本的协方差矩阵之和RA与RB,所有次试者A类和B类训练样本的协方差矩阵之和 与
[0137]
[0138]
[0139] 其中,XAi(i=1,2...10)表示主试者第i次想象左手运动的EEG信号,XBi(i=1,2...10)表示主试者第i次想象右手运动的EEG信号,X(i,A)T表示X(i,A)的转置,tr(X(i,A)X(i,A)T)表示矩阵X(i,A)X(i,A)T的迹,
[0140]
[0141]
[0142] 其中, 表示次试者第i次想象左手运动的EEG信号,表示次试者第i次想象右手运动的EEG信号;
[0143] 步骤五,求正则化协方差矩阵
[0144] 引入正则化参数α和β,取值范围为α∈[0,1]和β∈[0,1],α分别取0,0.001,0.01,0.1,0.2;β分别取0,0.01,0.1,0.2,0.4,0.6,在正则化参数的作用下,将主试者的协方差矩阵之和与次试者的协方差矩阵之和相结合,构造两类平均正则化协方差矩阵,公式如下所示:
[0145]
[0146]
[0147] 其中, 表示 的迹,I为N×N的单位矩阵,N为通道采集数;
[0148] 步骤六,将步骤五中的两类平均正则化协方差矩阵求和并进行特征值分解,求解正则白化矩阵,如下所示:
[0149]
[0150] 其中,为特征值对角矩阵,为对应的特征向量矩阵,则正则白化矩阵为:
[0151]
[0152] 步骤七,对步骤六中所得的ZA(α,β)和ZB(α,β)进行如下转换:
[0153]
[0154]
[0155] 其中,ΛA和ΛB为特征值对角矩阵,UA和UB为对应的特征向量矩阵,选取对角阵ΛA、ΛB中最大特征值对应的特征向量,构造空间滤波器如下:
[0156] WA=UAT·P
[0157] WB=UBT·P
[0158] 步骤八,将训练样本的两类EEG信号XA和XB经过相应的滤波器WA、WB有:
[0159] FA=WAT·XA
[0160] FB=WBT·XB
[0161] 步骤九,对步骤八中经过正则化共同空间模式过滤的脑电信号计算功率谱密度,求取频率在8~15Hz的功率谱密度值,利用构造学习字典B=[FA FB];
[0162] 步骤十,在主试者的训练样本中依次选取一组数据作为测试样本y,按以上步骤进行滤波,投影,保留处理后的测试样本数据;
[0163] 步骤十一,按下式求解测试样本的稀疏表示向量:
[0164]
[0165] 其中x为待求解的测试运动想象样本的稀疏表示向量,y待求解的测试运动想象样本数据,为ε为误差阈值;
[0166] 步骤十二,针对每一次运动想象i,根据测试样本的稀疏表示向量 计算残差[0167]
[0168] 其中 是由稀疏表示向量 得到的新向量,在该向量中,第i类运动想象所对应的元素项与稀疏表示向量中相应的元素项相同,其他元素项均为零;
[0169] 步骤十三,用残差最小的类别作为最终的运动想象类别的识别结果:
[0170] 是测试样本数据。
[0171] 进一步,所述无线通信模块的通信方法包括发射n路源信号、接收端接收混叠信号、分离系统分离多路混叠信号;
[0172] 所述的发射n路源信号是指n路源信号经信道混合后,混合系统称为A,在发送端由n根天线在空间发射;
[0173] 所述的接收端接收混叠信号是指接收端利用m(m≥n>1)根天线把混叠信号接收下来,接收信号被称为观测信号,接收端先进行观测信号的预处理,预处理包含两部分,即中心化处理和球面化处理;
[0174] 所述的分离系统分离多路混叠信号是指分离系统W会根据各路源信号信息熵值的不同在熵域分离该多路混叠信号,其中信息熵值的判据采用负熵;
[0175] 其中,负熵近似计算的表达式如下:
[0176]
[0177] 其中,kj为一些正常数,M为具有零均值、单位方差的高斯变量,函数Gj为非二次函数;
[0178] 当所有的Gj=G时,近似式成为:
[0179] JG(x)≈C[E{G(x)}-E{G(M)}]2 (式2)
[0180] 其中,G是任意非二次函数,C是一个常数;
[0181] 然后采用上述公式进行负熵的计算,根据各路信号负熵值的差异即可把各路信号提取出来,实现信道的多路复用。
[0182] 进一步,所述的分离系统分离多路混叠信号由于采用多路天线发射和多路天线接收的多输入多输出技术,MIMO-EDM无线通信系统随着收发天线数目的增加,极限信道容量也会随之线性地增加,MIMO-EDM无线通信系统极限容量的计算过程如下:
[0183] 利用Laguerre多项式计算可以得到:
[0184]
[0185] 其中,m=min(Nt,Nr)
[0186] n=max(Nt,Nr)
[0187] 为次数为k的Laguerre多项式
[0188] 如果令λ=n/m,可以推导出如下归一化后的信道容量表示式;
[0189]
[0190] 其中,
[0191]
[0192] 在快速瑞利衰落的情况下,令m=n=Nt=Nr,则v1=0,v2=4;
[0193] 渐进信道容量为:
[0194]
[0195] 利用不等式:
[0196] log2(1+x)≥log2(x) (式6)
[0197] 式(5)简化为:
[0198]
[0199] 本发明通过情绪感知模块、脑电波感知模块、体温感知模块感知乘客情绪、脑电波信号、体温,进而调整机舱内的的环境,提供舒适的体验,通过坐姿感知模块感知乘客坐姿,并自动调节座椅姿势,使得长途飞机旅行的乘客有更舒适的乘机体验。
[0200] 以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。