技术领域 本发明是与信号产生电路有关,尤指一种应用厚栅极氧化层金属氧化物 半导体晶体管元件来实现滤波电路中的电容元件以改善操作于低电压时产生 严重漏电流的锁相回路电路。 背景技术 近几年来,随着半导体制程的发展以及可携式电子产品的普及化,使用 低电压设计以降低功率且在电路中使用较小尺寸的晶体管元件来降低成本, 已成为各种电路设计技术中的基本需求。随着半导体制程由点一八制程、点 一二制程一路演进至六十五奈米(65nanometer),半导体元件的栅极氧化层 (gate oxide)厚度也随之降低,此外,为了满足电路系统的高速需求且同时 兼容于低供应电压系统,这些电子电路系统多操作于低电压且以全数字制程 为主,此先进制程具有可降低生产成本的优点。 一般而言,在电子电路系统中通常具有锁相回路(Phase Locked Loop, PLL)电路来产生频率信号锁相回路电路通过反馈机制来同步参考信号及反馈 信号之间的瞬间相位来达成输出稳定频率信号的目的,亦即,当两频率信号 于一时间区间内达到固定相位关系的状态时,即为相位锁定。整体而言,锁 相回路电路的操作原理即是把检测电路所测得的相位领先/落后结果,经由滤 波电路转换成电压信号或电流信号来控制可控制振荡器所输出的振荡信号的 频率,以达到调整相位的目的。 请参阅图1,图1所示即为已知锁相回路电路100的功能方块示意图。 已知锁相回路电路100一般包含有检测电路(例如相位/频率检测器)110、电 荷泵120、滤波电路(例如回路滤波器)130、可控制振荡器(例如压控振荡 器)140以及除频器150。检测电路110检测参考信号CLKref与反馈信号(其是 由除频器150对可控制振荡器140所产生的振荡信号CLKVCO进行除频所产生的 除频后振荡信号CLKdiv)两者间的相位关系来产生检测信号(拉升信号UP或下 降信号DN),之后,电荷泵120与滤波电路130便会根据检测信号(拉升信号 UP或下降信号DN)来产生控制信号VCTR至可控制振荡器140,接着,可控制 振荡器140便依据控制信号VCTR来提升或降低振荡信号CLKVCO的频率。由于 锁相回路电路为业界已知的元件,故详细操作原理于此不另赘述。 为满足先进制程的需求,锁相回路电路中的回路滤波器中的电容元件通 常采用金属氧化层电容(MOS capacitor)来加以实现,然而在利用先进制程所 形成的金属氧化层电容时,其金属氧化层电容的栅极氧化层厚度较薄,因此 往往会产生严重的漏电流,使得锁相回路电路的输出频率产生严重的抖动 (jitter)或甚至使锁相回路无法锁定。 请参阅图2,图2为图1所示的可控制振荡器140所接收的控制信号VCTR 的波形图。在先进的半导体制程中,使用标准制程实现的薄栅极氧化层电容 在正常操作下会产生严重的漏电流,故造成检测电路110于检测参考信号 CLKref与反馈信号CLKdiv的相位关系的两次操作的时间间隔中(例如参考信号 CLKref的一个周期Tref的时间),滤波电路130所输出的控制信号VCTR会因为 漏电流的缘故而产生变动,因而影响锁相回路电路100所输出的振荡信号 CLKVCO。 除此之外,已知电荷泵(如电荷泵120)操作在低供应电压之下,其线性 度的表现并不理想,同时可控制振荡器(例如压控振荡器)其亦可能由于有限 的电压范围而使得输入电压范围越来越狭隘。对于可控制振荡器而言,在所 需要的振荡频率范围不变的前提下,倘若减少输入电压范围将使得可控制振 荡器的增益(gain)需随之增加。也就是说,不论是电荷泵的线性度不佳(以及 动态范围狭隘),抑或可控制振荡器其本身过大的增益值,皆会导致锁相回路 电路所产生的输出频率的抖动特性不佳,因此如何提升锁相回路电路的输出 频率的抖动特性便成为集成电路设计者的一项重要课题。 发明内容 因此,本发明的目的之一即在于提供一种信号产生电路(例如锁相回路电 路),此信号产生电路利用厚栅极氧化层的金属氧化物半导体晶体管元件(例 如金属氧化层电容)作为滤波电路中的电容元件,来改善先进制程中滤波电路 (亦即回路滤波器)的漏电流的问题,此外,此信号产生电路还使用了电平转 换器来让滤波电路运作于较高的操作电压之下,而电荷泵及可控制振荡器(压 控振荡器)分别搭配电平转换器来与具有不同操作电压的回路滤波器兼容,以 达到解决上述已知锁相回路电路的问题并提升锁相回路电路的输出信号的质 量。 根据本发明的一实施例,其是揭露一种信号产生电路。此信号产生电路 包含有:检测电路、电荷泵、第一电平转换器、滤波电路、第二电平转换器 以及可控制振荡器。该检测电路用以根据参考信号以及振荡信号以产生检测 信号;该电荷泵,是根据该检测信号用以产生第一输出信号;而第一电平转 换器,其耦接至该电荷泵,是用以调整该第一输出信号电平以产生第二输出 信号;该滤波电路,耦接至该第一电平转换器,用以依据该第二输出信号以 产生第一滤波后控制信号;而该第二电平转换器,其耦接至该滤波电路,用 以调整该第一滤波后控制信号电平以产生第二滤波后控制信号;至于该可控 制振荡器,是耦接至该第二电平转换器,用以根据该第二滤波后控制信号以 产生该振荡信号。 依据本发明的另一实施例,其揭露一种信号产生电路。该信号产生电路 包含有:检测电路、电荷泵、滤波电路以及可控制振荡器。该检测电路是用 以根据参考信号以及振荡信号以产生检测信号。该电荷泵,耦接于该检测电 路,用以依据该检测信号来执行充电运作或放电运作以产生输出信号。该滤 波电路耦接至该电荷泵,是用以依据该输出信号以产生滤波后控制信号。该 可控制振荡器,是耦接至该滤波电路,用以根据该滤波后控制信号以产生该 振荡信号。其中该检测电路、该电荷泵以及该可控制振荡器包含有多个第一 晶体管元件以及多个第二晶体管元件,该滤波电路包含有至少一该第二晶体 管元件,其中每一该第二晶体管元件的栅极氧化层厚度是大于每一该第一晶 体管元件的栅极氧化层厚度。 附图说明 图1为已知锁相回路电路的功能方块示意图。 图2为图1所示的可控制振荡器所接收的控制信号的波形图。 图3为本发明锁相回路电路的一实施例的功能方块示意图。 图4为图3所示的滤波电路所输出的第一滤波后控制信号的波形图。 图5为图3所示的电荷泵、第一电平转换器以及滤波电路的电路示意图。 图6为图3所示的电荷泵相较于图1所示的已知电荷泵的特性曲线图。 图7为图3所示的滤波电路、第二电平转换器以及可控制振荡器的电路 示意图。 图8为图3所示的可控制振荡器相较于图1所示的已知可控制振荡器的 特性曲线图。 [主要元件标号说明] 100、300 信号产生电路 110、310 检测电路 120、320 电荷泵 321-1、321-2 电流源 322-1~322-4、352 薄栅极氧化层的P型金属氧化物半导体 晶体管 323-1、323-2、333-1、 333-2、353-1、353-2 厚栅极氧化层的N型金属氧化物半导体 晶体管 330 第一电平转换器 334、354 厚栅极氧化层的P型金属氧化物半导体 晶体管 130、340 滤波电路 342-1、342-2 厚栅极氧化层的金属氧化层电容 346 阻抗元件 350 第二电平转换器 140、360 可控制振荡器 150、370 除频器 380 第一电源域 390 第二电源域 具体实施方式 在本专利说明书及上述的申请专利范围当中使用了某些词汇来指称特定 的元件。所属领域中具有通常知识者应可理解,硬件制造商可能会用不同的 名词来称呼同一个元件。本说明书及上述的申请专利范围并不以名称的差异 来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准则。在 通篇说明书及上述的请求项当中所提及的「包含」为开放式的用语,故应解 释成「包含但不限定于」。以外,「耦接」一词在此是包含任何直接及间接的 电气连接手段。因此,若文中描述第一装置耦接于第二装置,则代表该第一 装置可直接电气连接于该第二装置,或通过其它装置或连接手段间接地电气 连接至该第二装置。 本发明是提供一种信号产生电路,其应用厚栅极氧化层的金属氧化层电 路元件来抑制信号产生电路中滤波电路的严重漏电流的现象,以提升信号产 生电路的性能并降低频率抖动。请注意到,在后续通篇说明内容之中,信号 产生电路与锁相回路电路为可彼此互换的用语,亦即,以下是以锁相回路电 路来作为本发明信号产生电路的一实施例以说明本发明的技术特征。 在接下来的叙述中,是揭露本发明的一实施例,通过将滤波电路(例如回 路滤波器)操作在供应电压较高的第二电源域(例如3.3伏特),而第一电平转 换器以及第二电平转换器是用以桥接滤波电路与其前后端的操作在供应电压 较低的第一电源域中(例如1.2伏特或1.8伏特或1.0伏特等等)的其余电路 架构。亦即,本发明揭露的信号产生电路(锁相回路电路)经由第一电平转换 器以及第二电平转换器的辅助,提供了升压/降压的运作功能,可使操作于不 同电源域的电路元件均可正常运作并同时改善已知技术中的漏电流问题。 请参阅图3,图3所示为本发明锁相回路电路300的一实施例的功能方 块示意图。锁相回路电路300包含有检测电路310、电荷泵320、第一电平转 换器330、滤波电路340、第二电平转换器350、可控制振荡器360以及除频 器370,其中,检测电路310是使用相位/频率检测器(phase/frequency detector,PFD)来加以实施;而滤波电路340则为回路滤波器(loop filter), 且该回路滤波器具有低通滤波特性,以滤除第二输出信号Io2中的高频成分, 其中第二输出信号Io2是由电荷泵320所产生的第一输出信号Io1经第一电平 转换器330调整而产生;而可控制振荡器360是采用压控振荡器(voltage controlled oscillator,VCO)来加以实施,以根据输入的滤波后控制信号(其 为电压信号Vfc1)输出振荡信号CLKvco,此振荡信号CLKvco的频率是受滤波后控 制信号Vfc1的电压大小所控制。 在接下来的叙述中,所引用的功能电路皆可利用现有技术的替换形成另 一新的实施例,然而采用这些架构来实现锁相回路电路仅作为范例说明之用, 并不为本发明的限制条件。此外,除频器370为选择性的元件,亦即在其它 实施例中,可依据电路应用的所需来省略除频器370的设置,而在接下来的 说明中,使用具有除频器370的锁相回路电路300仅作为范例说明之用。再 者,在不违反本发明精神之下,对图3所示的电路架构进行适当的修改亦是 可行的,这些设计变化均属本发明的范畴。 检测电路310用来检测参考信号(其为频率信号)CLKref的相位以及反馈振 荡信号(在本实施例中为除频器370所输出的除频后振荡信号CLKdiv)的相位来 产生检测信号Sdec。举例来说,当参考信号CLKref的相位超前除频振荡信号CLKdiv 时,检测信号Sdec为拉升信号UP,另一方面,当参考信号CLKref的相位落后除 频后振荡信号CLKdiv时,检测信号Sdec为下降信号DN。 电荷泵320是根据输入的检测信号Sdec的状态(为拉升信号UP或下降信 号DN)来执行充电运作或放电运作来调整第一输出信号Io1,换句话说,当电 荷泵320接收到拉升信号UP时,电荷泵320即供给充电电流给滤波电路330 以等效地提升滤波电路330目前所输出的电压电平,反之,当电荷泵320接 收到下降信号DN时,电荷泵320则由滤波电路330汲取放电电流以等效地降 低滤波电路330目前所输出的电压电平。简而言之,电荷泵320与滤波电路 330系用以提供可控制振荡器360所需的电压控制信号。 本实施例中,第一输出信号Io1被传送至第一电平转换器330,接着,第 一电平转换器330调整第一输出信号Io1的电压电平而产生第二输出信号Io2, 而此第二输出信号Io2的电压电平是高于第一输出信号Io1原本的电压电平。 如同前述的揭露,本发明的电路架构利用了升压以及降压的动作,是为了配 合使用厚栅极氧化层的金属氧化物半导体电容,而解决先进制程中信号产生 电路(例如锁相回路电路)中漏电流的现象,在本发明的其它实施例中,亦可 将第一电平转换器330以及第二电平转换器350置于锁相回路电路中的其它 位置。也就是说,将第一电平转换器330以及第二电平转换器350置于滤波 电路340的两侧仅为说明范例之用,并不为本发明的限制条件之一。而这些 设计变化皆落于本发明的范畴之中。而在图3所示的实施例中,滤波电路(回 路滤波器)340的输入信号因此可提供滤波电路340中厚栅极氧化层的金属氧 化层电容操作所需的较高电压电平,改善了已知技术中漏电流的现象。 滤波电路340即对第二输出信号I02进行滤波,本实施例中,滤波电路340 用来将第二输出信号I02中所具有的高频成分滤除掉并输出电压信号(第一滤 波后控制信号Vfc1),换句话说,滤波电路340为低通滤波器,而相仿地,第 二电平转换器350,其是耦接至滤波电路340,用来将第一滤波后控制信号 Vfc1的电压电平降低以产生第二滤波后控制信号Vfc2以作为可控制振荡器350 的控制信号。换句话说,第二电平转换器350用以将经由具有厚栅极金属氧 化层电容的滤波电路340滤波后的高电压电平信号Vfc1转换成低电压电平信号 Vfc2。至于可控制振荡器(压控振荡器)360,其耦接至第二电平转换器350,用 以根据已调整至较低电压电平的第二滤波后控制信号Vfc2来产生振荡信号 CLKVCO。此外,除频器370是耦接至可控制振荡器360以及检测电路310,用 以将频率较高的振荡信号CLKVCO除频后产生频率较低的除频后振荡信号CLKdiv 传送至检测电路310,以用作与参考信号CLKref比对所需的反馈信号。 请注意,本实施例中,锁相回路电路300的主要元件中,检测电路310、 电荷泵320、可控制振荡器360以及除频器370是操作于第一电源域380,而 滤波电路340则是操作于第二电源域390,因此,锁相回路电路300大体上 仍运作在先进标准制程惯用的低电压电源域(亦即第一电源域380)。 请注意到,在本实施例中,使用第一电源域380以及第二电源域390仅 用以描述信号产生电路300中各个电路架构的供应电压的不同,其实际供应 电压大小并非本发明的限制条件之一。任何在将先进制程的锁相回路电路中 回路滤波器内的电容元件以厚栅极氧化层晶体管来加以取代的电路架构(亦 即电荷泵、检测电路、除频器以及可控制振荡器中大致上是使用薄栅极氧化 层晶体管)以改善整体电路中漏电流现象的架构皆符合本发明的精神,并落于 本发明的范畴之中。 如上所述,回路滤波器内的电容元件是以厚栅极氧化层晶体管来加以实 作,故相较于采用薄栅极氧化层晶体管来实现金属氧化层电容的已知回路滤 波器,本发明回路滤波器便可改善已知漏电流问题,因此,本发明锁相回路 电路(信号产生电路300)的输出频率抖动特性相较于已知技术即有显著的改 善。请一并参阅图2与图4,图4为图3所示的滤波电路340所输出的第一 滤波后控制信号Vfc1的波形图。明显地,第一滤波后控制信号Vfc1受漏电流影 响的程度较为轻微,故本发明锁相回路电路300的输出频率的抖动特性较佳, 亦即相较于已知技术,本发明锁相回路电路300的输出频率质量是大为提升。 请参阅图5,图5所示为图3所示的电荷泵320、第一电平转换器330以 及滤波电路340的电路示意图。如图5所示,电荷泵320包含有分别根据拉 升信号UP与下降信号DN来加以运作的第一电路结构(亦即第一电荷泵元件) 及第二电路结构(亦即第二电荷泵元件),其中第一电路结构包含有一电流源 321-1、两个薄栅极氧化层的P型金属氧化物半导体晶体管元件322-1、322-2、 一开关元件SW1以及一个厚栅极氧化层的N型金属氧化物半导体晶体管元件 323-1,而第二电路结构则包含有一电流源321-2、两个薄栅极氧化层的P型 金属氧化物半导体晶体管元件322-3、322-4、一开关元件SW2以及一个厚栅 极氧化层的N型金属氧化物半导体晶体管元件323-2。 此外,第一电平转换器330包含有两个厚栅极氧化层的N型金属氧化物 半导体晶体管元件333-1、333-2以及两厚栅极氧化层的P型金属氧化物半导 体晶体管元件334-1、334-2,而滤波电路340则应用二阶电容电阻滤波器架 构,包含有两厚栅极氧化层的金属氧化层电容342-1、342-2以及一阻抗元件 346,相较于已知回路滤波器,滤波电路340的电容元件采用厚栅极氧化层的 P型金属氧化物半导体元件来加以实作。请注意,采用二阶电容电阻滤波器 来当作回路滤波器仅用来作为范例说明之用,而非是本发明的限制条件之一, 也就是说,在本发明的其它实施例中亦可采用其它滤波器架构,而只要是采 用厚栅极氧化层晶体管元件来实作滤波电路中的电容元件均符合本发明的精 神。 如图所示,P型金属氧化物半导体晶体管元件322-1与322-2构成第一 电流镜,N型金属氧化物半导体晶体管元件323-1与333-1构成第二电流镜, P型金属氧化物半导体晶体管元件334-1与334-2构成第三电流镜,N型金属 氧化物半导体晶体管元件333-2与323-2构成第四电流镜,以及P型金属氧 化物半导体晶体管元件322-3与322-4构成第五电流镜。 当检测电路310输出拉升信号UP时,开关元件SW1会导通而开关元件 SW2则不导通,因此,电流源321-1所提供的电流I1先经由第一电流镜而产 生第一输出信号Io1,接着,第一输出信号Io1再经由第二、第三电流镜而产生 充电电流Isource来提升滤波电路340所产生的第一输出信号Vfc1的电压电平, 换言之,当检测电路310输出拉升信号UP时,电流泵320是启动充电运作, 亦即第二输出信号Io2此时的电压电平会因为电容充电的缘故而上升。 另一方面,当检测电路310输出下降信号DN时,开关元件SW2会导通而 开关元件SW1则不导通,因此,电流源321-2所提供的电流I2经由第五电流 镜而产生第一输出信号Io1,接着,第一输出信号Io1再经由第四电流镜而产生 放电电流Isink来调降滤波电路340所产生的第一输出信号Vfc1的电压电平,换 言之,当检测电路310输出拉升信号UP时,电荷泵320是启动放电运作,亦 即,第二输出信号Io2此时的电压电平会因为电容放电的缘故而降低。 由于电荷泵320中的P型金属氧化物半导体晶体管元件322-2、322-3与 N型金属氧化物半导体晶体管元件323-1、323-2操作于电压范围0~VL(如 1.8伏特)之间,而第一电平转换器330中的P型金属氧化物半导体晶体管元 件334-1、334-2与N型金属氧化物半导体晶体管元件333-1、333-2则是操 作于电压范围0~VH(如3.3伏特)之间,故通过电流镜架构与电流-电压转换, 第一电平转换器330便可将较低的输入电平转换成较高的输出电平。 清参阅图6,图6为图3所示的电荷泵320相较于图1所示的已知电荷 泵120的特性曲线图。于图6中,横轴代表时间,而纵轴则代表回路滤波器(亦 即滤波电路340、130)所输出的电压,此外,特性曲线CV1是代表本发明电 荷泵320的特性,而另一特性曲线CV2则代表已知电荷泵120的特性。如图 所示,参考信号CLKref于时间点T1产生上升缘(rising edge),而除频后振荡 信号CLKdiv(亦即反馈信号)则于时间点T1之后的时间点T2产生上升缘,故于 时间点T1时,检测电路310、110便判断除频后振荡信号CLKdiv(反馈信号) 的相位落后参考信号CLKref的相位,因此输出拉升信号UP而造成回路滤波器 (亦即滤波电路340、130)的输出电压随之上升,直到除频后振荡信号CLKdiv(亦 即反馈信号)于时间点T2产生上升缘为止。 对于采用先进半导体制程的已知锁相回路电路100来说,滤波电路130 系单纯地操作于电压范围0~VL中,然而,对于本发明锁相回路电路300来 说,滤波电路340则是操作于第二电源域390(电压范围0~VH),如图6所示。 由于第一电平转换器330的缘故,电荷泵320不仅可与滤波电路340兼容, 且电荷泵320的输出动态范围以及线性区间相较于已知电荷泵120皆较为增 加,而较大的输出动态范围以及线性区间可改善整体信号产生电路300于低 电压工作下的特性。 请参阅图7,图7所示图3所示的滤波电路340、第二电平转换器350以 及可控制振荡器360的电路示意图。滤波电路340的电路架构如前所述,而 第二电平转换器350包含有两厚栅极氧化层的N型金属氧化物半导体晶体管 353-1、353-2、一厚栅极氧化层的P型金属氧化物半导体晶体管354以及一 薄栅极氧化层的P型金属氧化物半导体晶体管352构成。此外,N型金属氧 化物半导体晶体管353-1与353-2是构成一电流镜,且P型金属氧化物半导 体晶体管元件354与N型金属氧化物半导体晶体管元件353-1操作于电压范 围0~VH之间,而P型金属氧化物半导体晶体管元件352与N型金属氧化物 半导体晶体管元件353-2则是操作于电压范围0~VL之间。 因此,第二电平转换器350可将第一滤波后控制信号Vfc1的电压电平(介 于0~VH之间)转换成具有较低电压电平的第二滤波后控制信号Vfc2(介于0~ VL之间),也就是说,第二滤波后控制信号Vfc2的电压电平较第一滤波后控制 信号Vfc1低,以供给操作在第一电源域380(其供应电压为VL)的可控制振荡器 360恰当的控制电压。可控制振荡器360中电路元件皆使用薄栅极氧化层晶 体管,并操作于第一电源域380(其供应电压为VL),而第二电平转换器350 除了与可控制振荡器360相连接的晶体管(P型金属氧化物半导体晶体管352) 为薄栅极氧化层晶体管,其余元件(N型金属氧化物半导体晶体管353-1、 353-2与P型金属氧化物半导体晶体管354)皆使用厚栅极氧化层晶体管来实 施之。 请参阅图8,图8为图3所示的可控制振荡器360相较于图1所示的已 知可控制振荡器160的特性曲线图。于图8中,横轴与纵轴分别代表压控振 荡器(亦即可控制振荡器360、160)所接收的控制电压与所产生的输出频率的 振荡频率,此外,特性曲线CV3是代表本发明可控制振荡器360的增益特性, 而另一特性曲线CV4则代表已知可控制振荡器160的增益特性。如图8所示, 由于第二电平转换器350的缘故,可控制振荡器360不仅可与滤波电路340 兼容,且可控制振荡器360的特性曲线CV3相较于已知可控制振荡器160的 特性曲线CV4而言是较为平缓,所谓振荡器增益即意指可控制振荡器输入信 号(例如控制电压)与可控制振荡器输出信号(例如输出频率)间的对应比例关 系,换言之,在本实施例中,可控制振荡器360的振荡器增益较小,因此可 钝化信号扰动对输出频率的影响而降低锁相回路电路(信号产生电路300)的 抖动,进而改善整体锁相回路电路于低电压工作下的特性,亦即,具有较低 增益值的压控振荡器360可使锁相回路电路拥有较佳的输出频率质量。 请注意到,图5及图7所示的电路架构仅作为发明说明之用,亦即,在 不违背本发明的精神的前提下,采用其它的电路架构来实现第一电平转换器 330、滤波电路340与第二电平转换器350亦是可行的。 简而言之,本发明的一实施例提供了一种可防制漏电流的电路架构,以 改善输出频率的抖动特性,相较于设计补偿电路来用补偿电流对滤波电路产 生的严重漏电流加以补偿的已知技术,本发明所提供的信号产生电路(锁相回 路电路)不仅架构较为简易实现、使用较少面积且与低电压先进制程亦具有良 好的兼容度,再者,本发明所提供的信号产生电路(锁相回路电路)另可改善 电荷泵与可控制振荡器的特性,例如通过提升电荷泵的动态范围及降低可控 制振荡器的增益来有效地提升输出频率的质量。 以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均 等变化与修饰,皆应属本发明的涵盖范围。