技术领域
[0001] 本发明涉及气象学天气预测技术领域,特别涉及一种基于天气雷达的短临智能外推方法。
相关背景技术
[0002] 对流天气的临近预报是指对未来0~2小时的对流天气系统及其所伴随的灾害性天气的发生、发展、演变和消亡的预报,强对流天气是影响我国的主要灾害性天气之一,具有空间尺度小、生命史短、突发性强、发展演变迅速、破坏力大等特点,因此,针对强对流天气的临近预报一直是气象预报工作的重点和难点。
[0003] 目前传统的天气预测方法有两种,即数值天气预报(NWP)法和基于光流矢量的天气预测方法。数值天气预报法是一种先对大气进行物理建模,再通过模拟物理模型进行预测的方法,该方法的优势体现在对于长时间范围内的天气预测比较准确,但是对0~2小时内的天气状况无法预测,因此不宜使用NWP方法进行短临预报。另一种在实际中得以应用的天气预测方法是基于光流矢量的方法,该方法是先通过两个雷达回波图像来估算光流矢量,该光流矢量可以理解为云的运动方向,然后根据最后一张雷达图进行合理的外推,得到最终的预测结果,该方法在0~2小时内的短临预测结果准确度更高。
[0004] 以上基于雷达资料的短临外推预报方法的研究思路主要是围绕着单个天气变化过程中的对流单体演变过程,并未考虑不同天气变化过程中的不同对流单体间的类比,且缺乏自学习能力。
具体实施方式
[0020] 下面结合附图和实施例对本发明作进一步详细说明。
[0021] 如图1所示,基于机器学习的短临外推方法的预报准确性依赖从范例库中提取的历史对流单体演变轨迹范例,范例质量好则预报准确性高。因此能否从提取库中选楚最优的范例取决于不同对流单体演变序列的相似性度量算法设计,考虑到对流单体具有很强的季节性特征,拟采用基于非平稳季节ARIMA模型来进行拟合,更科学地实现不同序列片段间的相似性度量。各模块的方法如下:
[0022] (1)天气个例雷达基数据的收集、质量控制;
[0023] (2)基于雷达基数据的对流单体识别与跟踪;
[0024] (3)基于对流单体演变的时间序列进行特征选择;
[0025] (4)构建基于时序片段的对流单体演变范例库;
[0026] (5)设计适合对流单体演变序列的相似性度量算法;
[0027] (6)基于类比方法进行对流单体演变的短临外推;
[0028] (7)业务检验与对流单体演变范例库的自学习机制。
[0029] 本发明设计的一种天气变化预测方法在实际应用过程当中,基于历史气象雷达基数据,针对风暴单体的移动路径进行预测,获得未来0~2小时预测的天气变化过程,具体包括如下步骤:
[0030] 步骤a:收集某个地区天气个例雷达基数据。
[0031] 步骤b:如图2所示,从一块地区的历史气象雷达基数据中识别风暴单体,具体步骤如下:
[0032] 步骤b1:首先在体积扫描的每个径向上搜索强度大于一定阀值(默认为30dBz)的连续点,合并成有一定权重长度的一维风暴段;
[0033] 步骤b2:如图4所示,在PPI(像素密度)层中按方位距离、长度重叠的相关性将风暴段合并成有一定权重面积(默认为10平方千米)的二维风暴分量;
[0034] 步骤b3:最后按空间垂直相关将风暴分量合并成具有一定权重体积的三维风暴体,
[0035] 识别完成后,获得风暴单体;
[0036] 步骤b4:提取所识别风暴单体的特征,包括季节、质心位置、质量权重体积、最大反射率等,具体详见下表1所示:
[0037] 表1风暴单体特征值
[0038]
[0039] 步骤c:如图3所示,采取质心追踪法追踪风暴单体的轨迹,所谓质心跟踪法,主要是根据前一时刻风暴的运动矢量和当前风暴与前一时刻风暴可能存在的位置关系对风暴单体的轨迹进行追踪,同时根据位置关系结果估计两个风暴单体的合并、分裂、新生和消亡。该算法的基本思想是:存在相似特征(包括体积、强度等)的风暴单体优先配对,近距离的风暴单体优先配对,但两者之间的最大速度不得超过限定值。风暴跟踪根据连续时间内的多个体扫识别出的风暴单体及其特征,通过对最后两个体扫匹配风暴体实现风暴跟踪。风暴单体的轨迹追踪的具体步骤如下:
[0040] 步骤c1:用前一时刻t0每一个风暴体的运动矢量估计其在当前t1时刻可能的质量权重中心位置,如果该风暴体在t0时刻扫描体中是第一次测得,则用缺省的运动矢量,即:
[0041]
[0042]
[0043] 其中Xexp、Yexp为缺省的运动矢量;vpast为上个时次的速度标量;θ为速度的方位角;Dt=t1-t0,表示两个风暴单体扫描间的时间间隔。
[0044] 关键问题是如何给出t0时刻新生风暴体的初始速度,特别是当t0时刻是程序处理的第一个体扫描资料,无历史路径时,就必须较为准确的给出每一个风暴体的初始速度。通过分别计算两时刻风暴体的群体质量权重中心,来获取新生风暴体初始速度缺省值,方法如下:
[0045] t0时刻所有风暴体的群体质量权重中心为:
[0046]
[0047] t1时刻所有风暴体的群体质量权重中心为:
[0048]
[0049] 则t0时刻任一风暴的速度缺省值为:
[0050]
[0051] 其中,Vz0i,Vz1i分别为t0和t1时刻任一风暴的反射率因子权重体积,Xz0i,Yz0i,Xz1i,Yz1i,分别为t0和t1时刻任一风暴的质量权重中心。
[0052] 步骤c2:对于t0时刻探测的风暴,计算每个风暴在t1时刻的估计位置与t1时刻任一风暴体的质量权重中心之间的距离:
[0053]
[0054] 然后,按如下规则匹配两风暴:
[0055] (1)若t1时刻只有一个风暴与该风暴的距离小于等于相关风暴的最小距离阀值Td,且满足下列三个条件则认为这两个风暴是同一个风暴,实现匹配:
[0056] ①两个风暴的反射率因子权重体积比大于或等于相关风暴最小体积比阈值;
[0057] ②两个风暴的移动方向之间的夹角小于相关风暴最大移向偏差阈值;
[0058] ③两个风暴的移动速度小于、等于相关风暴最大移速阈值。
[0059]
[0060] 其中(Xpast,Ypast)、(Xcur,Ycur)分别表示t0、t1时刻风暴的反射率权重中心。
[0061] (2)若t1时刻有多个风暴与该风暴的距离小于等于相关风暴的最小距离阀值Td,按以下情况处理:
[0062] 如果t1时刻这几个风暴的质量权重体积之和与t0时刻风暴的质量权重体积的比值小于等于风暴分裂最小体积比阀值Tsplit。
[0063]
[0064] 其中M、Vcuri分别为t1时刻满足距离阀值的风暴数及任一风暴的质量权重体积。
[0065] 说明可能存在风暴分裂,只要t1时刻这几个风暴满足(1)中的②和③两个条件,就认为它们都与t0时刻的风暴相关。
[0066] 反之,如果t1时刻这几个风暴的质量权重体积之和与t0时刻风暴的质量权重体积的比值大于风暴分裂最小体积比阀值Tsplit,即:
[0067]
[0068] 则认为不可能存在风暴分裂,取t0时刻该风暴距离最小的一个与该风暴匹配,并判断是否满足(1)中的②和③两个条件,如果满足就认为其与t0时刻该风暴相关。
[0069] (3)若t1时刻没有风暴与该风暴的距离小于等于相关风暴的最小距离阀值Td,则认为t0时刻的该风暴在t1时刻消亡或发生合并。
[0070] 步骤c3:若t0时刻的某一风暴在t1时刻没有风暴与之相关,就认为发生风暴的合并,若t1时刻的某一风暴在t0时刻没有风暴与之相关,则标记该风暴为新生风暴单体。
[0071] 步骤c4:根据匹配结果,计算t1时刻每一风暴的运动矢量:
[0072]
[0073] 利用t1时刻风暴的运动矢量预报未来t2时刻的质量权重中心位置,如果该风暴是新生风暴,则不做预报,计算完成后,获得若干风暴单体的运动轨迹。
[0074] 步骤d:将获得的若干条长度不等风暴单体轨迹序列,切割成长度为n+1的风暴单体轨迹范例存储于数据库中,自此范例库搭建完毕。
[0075] 步骤e:此部分为天气预测部分,获取当前时段天气雷达基数据,执行步骤a至步c,获得若干风暴单体的运动轨迹,截取轨迹的前n项,得到若干个长度为n的风暴单体序列。依次将这些序列与数据库中范例的前n项进行对比,根据表2关联表的算法计算相似度(Hss),选择相似度最高的范例,将该范例的第n+1项风暴单体作为该风暴序列下个时次(未来第6分钟)的风暴单体状态,计算完成后,获得下个时次(未来第6分钟)的天气状况。
[0076] 表2Contingency Table
[0077]
[0078]
[0079]
[0080] 其中,hits表示命中,即事件预测将发生,且确实发生;misses表示未命中,即事件预测不会发生,但确实发生;false alarms表示误报,即事件预测将发生,但没有发生;correct negatives表示正确的负面,即事件预测不会发生,也不会发生;Yes表示像素点有反射率,No表示无反射率。将两个风暴单体同一位置的像素点进行比较,当都显示为Yes时,hits+1,当都显示为No时,correct negatives+1。例如用Hss算法分别计算出前5对风暴单体的相似度,分别为S1、S2、S3、S4、S5,每个位置风暴单体的权重为W1~W5,距离当前时次越近,权重越高,默认权重为0.2、0.4、0.6、0.8、1.0,最后两条轨迹的总相似度为通过比较整个数据库中的范例找出与目标轨迹相似度最高的范例,以该范例的最后位的风暴单体作为预报结果。
[0081] 步骤f:将预测的6分钟的天气状况作为已知数据,转步骤e,迭代预测出下下个时次(未来第12分钟)所有风暴单体的状态,重复此过程,直至预测未来2小时的天气状况,至此0~2小时外推结束。