技术领域
[0001] 本发明涉及机组设备技术领域,具体而言,涉及一种机组设备安全隐患管理方法。
相关背景技术
[0002] 随着城市化的发展和建设速度的加快,电厂机组设备的使用也迎来了井喷式的增长,因此,保障机组设备安全稳定的运行是当前都比较关注的问题,特别是对机组设备安全隐患的提前排查,防止安全隐患的进一步恶化,造成不可估量的生命财产的损失。
[0003] 当前的机组设备都是通过工作人员进行人工排查、定期排查,当发现机组设备存在安全隐患时,才进行上报维修,这种传统的方式效率低,且无法实现对机组设备的实时管理,甚至有的机组设备已经发生安全隐患,工作人员却没有实时上报处理,这就导致机组设备发生进一步损坏,造成经济损失,影响机组设备的正常运行。
具体实施方式
[0065] 下面结合附图和实施例,对本发明的具体实施方式做进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
[0066] 在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
[0067] 术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
[0068] 在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体的连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
[0069] 下文是结合附图对本发明的优选的实施例说明。
[0070] 如图1所示,本发明的实施例公开了一种机组设备安全隐患管理方法,包括:
[0071] S110:获取所有待管理机组设备的历史管理数据,并根据历史管理数据确定每一个待管理机组设备的安全隐患概率;
[0072] 在本申请的一些实施例中,在获取所有待管理机组设备的历史管理数据,并根据历史管理数据确定每一个待管理机组设备的安全隐患概率时,包括:
[0073] 根据历史管理数据构建历史管理数据集合,并确定每一个历史管理数据对应的历史数据数值;
[0074] 根据所有的历史数据数值计算每一个待管理机组设备的安全隐患概率;
[0075] 根据下式计算待管理机组设备的安全隐患概率:
[0076]
[0077] 其中,Pi为第i个待管理机组设备的安全隐患概率,Ki为第i个历史管理数据对应的历史数据数值,Qi为第i个历史管理数据对应的权重,w为预设值,n为历史管理数据的数量。
[0078] 本实施例中,历史管理数据是指待管理机组设备的历史维修数据,历史预警数据等。历史数据数值为对应的历史维修次数,历史维修时长,历史预警次数等。
[0079] 上述技术方案的有益效果是:本发明通过计算待管理机组设备的安全隐患概率,进而可以为待管理机组设备的排序和分组奠定基础。
[0080] S120:基于安全隐患概率对所有的待管理机组设备进行排序,并确定高危待管理机组设备和低危待管理机组设备;
[0081] 在本申请的一些实施例中,在基于安全隐患概率对所有的待管理机组设备进行排序,并确定高危待管理机组设备和低危待管理机组设备时,包括:
[0082] 获取与待管理机组设备对应的预设安全隐患概率;
[0083] 将所有的安全隐患概率进行数值大小排序,并构建安全隐患概率集合,其中,安全隐患概率集合中的头数据为最大的安全隐患概率,安全隐患集合中的尾数据为最小的安全隐患概率;
[0084] 将预设安全隐患概率插值到安全隐患概率集合中;
[0085] 将安全隐患概率集合中的头数据和预设安全隐患概率之间的所有安全隐患概率作为高危待管理机组设备;
[0086] 将安全隐患概率集合中的尾数据和预设安全隐患概率之间的所有安全隐患概率作为低危待管理机组设备。
[0087] 本实施例中,预设安全隐患概率和待管理机组设备相对应,每一个待管理机组设备的预设安全隐患概率不同,在此不作具体限定。
[0088] 本实施例中,高危待管理机组设备中包括预设安全隐患概率对应的待管理机组设备。
[0089] 上述技术方案的有益效果是:本发明通过确定高危待管理机组设备和低危待管理机组设备,可以为安全隐患管理提供技术支撑,优先管理高危待管理机组设备。
[0090] S130:采集高危待管理机组设备的第一图像,并将第一图像输入至预先训练的图像分割模型,基于图像分割模型得到第二图像,其中,第二图像上标注有若干分割线;
[0091] 本实施例中,图像分割模型是预先训练好的,且是基于不同的数据样本以及数据样本所匹配的图像分割方法为基础,训练得到的。
[0092] S140:将第二图像输入至预先训练的隐患目标检测模型,确定第二图像中包含的隐患目标,并基于隐患目标对第二图像进行扣取,得到隐患目标图像;
[0093] 本实施例中,隐患目标检测模型是预先训练好的,且是基于不同的数据样本以及数据样本所匹配的隐患目标为基础,训练得到的。
[0094] S150:从隐患目标图像上提取安全隐患特征,并得到多个候选特征因子,从多个候选特征因子中确定最相关特征因子,其中,候选特征因子表示产生安全隐患的影响因素,最相关特征因子表示影响程度最大的影响因素;
[0095] S160:基于候选特征因子和最相关特征因子构建安全隐患管理模型,并根据安全隐患管理模型输出对应待管理机组设备的安全隐患值;
[0096] 在本申请的一些实施例中,在基于候选特征因子和最相关特征因子构建安全隐患管理模型时,包括:
[0097] 提取每一个隐患目标图像对应的候选特征因子和最相关特征因子;
[0098] 将所有的候选特征因子和最相关特征因子按照预设的比例分为训练集和测试集;
[0099] 搭建神经网络架构;
[0100] 将训练集输入至预先搭建的神经网络架构,直至神经网络收敛,得到初始安全隐患管理模型;
[0101] 将测试集输入初始安全隐患管理模型进行测试,并获取对应的测试集准确率;
[0102] 当测试集准确率达到准确率阈值时,得到安全隐患管理模型;
[0103] 当测试集准确率未达到准确率阈值时,对初始安全隐患管理模型进行二次训练。
[0104] 本实施例中,预设的比例可以是1:1或者1:3等,在此不作具体限定。
[0105] 本实施例中,神经网络架构包括深度前馈网络、循环神经网络、长短期记忆网络等。
[0106] 上述技术方案的有益效果是:本发明可以保证安全隐患管理模型的精准度,避免出现训练误差,进而保证输出的安全隐患值的精度。
[0107] 在本申请的一些实施例中,在对初始安全隐患管理模型进行二次训练时,包括:
[0108] 基于初始安全隐患管理模型对每一个隐患目标图像进行检测,将能够准确检测的隐患目标图像丢弃;
[0109] 统计无法准确检测的隐患目标图像对应的图像数量,并将图像数量与第一阈值进行比较,当无法检测的图像数量大于第一阈值时,从无法检测的图像中随机选取与第一阈值数量相等的隐患目标图像;
[0110] 当无法检测的图像数量小于或等于第一阈值时,选取所有无法检测的隐患目标图像;
[0111] 对所有选取的隐患目标图像生成标签,并得到第二训练集,并基于第二训练集对初始安全隐患管理模型进行训练,直至测试集准确率达到准确率阈值,得到安全隐患管理模型。
[0112] 本实施例中,第一阈值可以根据实际情况进行设置,在此不作具体限定。
[0113] 上述技术方案的有益效果是:本发明通过得到第二训练集,并基于第二训练集对初始安全隐患管理模型进行训练,可以进一步保证安全隐患管理模型的精准度。
[0114] S170:根据安全隐患值判断对应的待管理机组设备是否存在安全隐患,并当待管理机组设备存在安全隐患时,实时发出预警提醒。
[0115] 在本申请的一些实施例中,在根据安全隐患值判断对应的待管理机组设备是否存在安全隐患时,包括:
[0116] 获取与待管理机组设备对应的安全隐患阈值;
[0117] 根据安全隐患值和安全隐患阈值之间的关系判断对应的待管理机组设备是否存在安全隐患;
[0118] 当安全隐患值小于安全隐患阈值时,则判断对应的待管理机组设备不存在安全隐患;
[0119] 当安全隐患值大于或等于安全隐患阈值时,则判断对应的待管理机组设备存在安全隐患。
[0120] 上述技术方案的有益效果是:本发明根据安全隐患值和安全隐患阈值之间的关系判断对应的待管理机组设备是否存在安全隐患,进而可以直观的判断出待管理机组设备是否存在安全隐患,提高工作效率。
[0121] 在本申请的一些实施例中,在实时发出预警提醒时,包括:
[0122] 计算安全隐患值和安全隐患值阈值之间的安全隐患比值;
[0123] 根据安全隐患比值设定不同的预警等级;
[0124] 当安全隐患比值≥85%时,则设定一级预警等级;
[0125] 当65%≤安全隐患比值<85%时,则设定二级预警等级;
[0126] 当安全隐患比值<65%时,则设定三级预警等级;
[0127] 其中,一级预警等级>二级预警等级>三级预警等级。
[0128] 上述技术方案的有益效果是:本发明通过发出一级预警等级或二级预警等级或三级预警等级,进而可以实现针对性预警,根据不同的预警情况来执行不同的处理措施,提高安全隐患管理效率。
[0129] 在本申请的一些实施例中,在判断机组设备不存在安全隐患之后,还包括:
[0130] 获取预先确定的工作项目计划,并对工作项目计划进行模拟仿真;
[0131] 基于模拟仿真结果确定待管理机组设备的工作损耗因子;
[0132] 根据工作损耗因子对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期;
[0133] 基于目标隐患管理周期对待管理机组设备进行安全隐患管理。
[0134] 本实施例中,工作项目技术是指待管理机组设备的日常个工作安排。
[0135] 本实施例中,隐患管理周期T可以是24小时、36小时等。
[0136] 在本申请的一些实施例中,在根据工作损耗因子对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期时,包括:
[0137] 预先设定第一预设工作损耗因子和第二预设工作损耗因子;
[0138] 根据工作损耗因子、第一预设工作损耗因子和第二预设工作损耗因子之间的关系对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期;
[0139] 当工作损耗因子小于第一预设工作损耗因子时,则根据第一预设修正因子h1对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期T*h1;
[0140] 当工作损耗因子大于或等于第一预设工作损耗因子,且工作损耗因子小于第二预设工作损耗因子时,则根据第二预设修正因子h2对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期T*h2;
[0141] 当工作损耗因子大于或等于第二预设工作损耗因子时,则根据第三预设修正因子h3对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期T*h3。
[0142] 上述技术方案的有益效果是:本发明根据工作损耗因子、第一预设工作损耗因子和第二预设工作损耗因子之间的关系对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期,本发明通过对待管理机组设备的隐患管理周期T进行修正,得到目标隐患管理周期,可以实现动态化调整,避免定期排查,避免待管理机组设备进一步损坏的现象。
[0143] 在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
[0144] 虽然在上文中已经参考实施例对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的实施例中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行全部的描述仅仅是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
[0145] 本领域普通技术人员可以理解:以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。