首页 / 资源管理系统及资源管理方法

资源管理系统及资源管理方法有效专利 发明

技术领域

[0001] 本发明涉及一种资源管理系统及资源管理方法,尤其涉及一种能够混合应用集中式与分布式资源管理机制的资源管理系统及资源管理方法。

相关背景技术

[0002] 由于5G私有专网(Private Network)的兴起,混合云运算成为主流,运算装置中的边缘运算装置常以分散的方式建置在应用场域中,再利用网络连接私有云(Private Cloud)或公有云(Public Cloud)。为了有效平衡运算或网络资源的使用,目前多以“丛集”(Cluster)方式并选定一个主责节点(Master Node,MN)来管理工作点(Worker Node,WN)的工作需求派遣。
[0003] 然而,网络传输延迟和数据压缩延迟,却造成无法满足终端用户的服务质量要求,并造成资源浪费与耗电的问题。虽然目前有许多分布式资源管理机制发明被提出,但存在以下问题:
[0004] 1.现有的分布式资源管理机制与集中式丛集资源管理机制无法共存。
[0005] 2.在现有的分布式的资源管理机制中,为了达成负载平衡的快速派遣,需要每一个工作节点的资源状态分享,造成额外的网络流量和决策延迟;平衡效果也会因工作热点的转移、收敛时间较长,易产生钟摆效应。
[0006] 3.现有的分布式的资源管理机制部分采用了预留的“可分享”/“不可分享”资源政策进行分布式管理,其固定且缺乏弹性的预留机制,反而让资源使用上产生浪费、效率更低。
[0007] 4.在许多利用无线中继互联的Mesh Edge Cloud前案中,无论是采用单纯集中式或单纯分布式的资源管理都不利于资源使用服务质量与效益。
[0008] 因此,如何通过资源管理机制的改良,来克服上述的缺陷,已成为该项事业所欲解决的重要课题之一。

具体实施方式

[0054] 以下是通过特定的具体实施例来说明本发明所公开有关“资源管理系统及资源管理方法”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以实行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
[0055] 图1为根据本发明实施例的资源管理系统的方框示意图。参阅图1所示,本发明实施例提供一种资源管理系统1,其包括多个工作者节点WN1、…、WNi及主责节点MN,彼此通信连接。
[0056] 工作者节点WN1包括资源池RP1、资源监视器RM1、收集器代理模块CA1、流量引导推理模块TS1、请求处理模块RH1、许可控制器AC1及临界值调整器TA1。而其余的工作者节点与主责节点MN基本上与工作者节点WN1具有相同的配置,例如,工作者节点WNi包括资源池RPi、资源监视器RMi、收集器代理模块CAi、流量引导推理模块TSi、请求处理模块RHi、许可控制器ACi及临界值调整器TAi,而主责节点MN包括资源池RP0、资源监视器RM0、收集器代理模块CA0、流量引导推理模块TS0、请求处理模块RH0、许可控制器AC0及临界值调整器TA0。因此如有必要,否则下文将不再赘述。
[0057] 需要说明的是,上述工作者节点WN1及主责节点MN中使用的资源池、资源监视器、收集器代理模块、流量引导推理模块、请求处理模块、许可控制器及临界值调整器均可通过硬件、软件或固体的形式实现其功能。当以软件形式实现时,可将用于执行上述元件或模块的功能的程序代码储存于一般计算机系统内建的存储器中,并经由处理器执行来实现上述元件或模块。
[0058] 资源池RP1将工作者节点WN1对应的系统资源划分为可共享资源SR1及不可共享资源NSR1。以工作者节点WN1为一常见的计算机系统进行举例,工作者节点WN1可包括中央处理器、存储器、闪存、网络传输接口、硬盘及图形处理器,因此,上述的系统资源可包括中央处理器可处理量、存储器可使用量、网络可使用量、闪存可使用量、硬盘可使用量及图形处理器可处理量,但本发明不限于此。本发明主要是通过整合每一个工作者节点WN1、…、WNi的可共享资源SR1、…、SRi以形成可共享资源池架构,其兼容于现有的集中式资源管理机制。
[0059] 请求处理模块RH1接收来自多个电子装置的多个资源使用请求RQ1。其中,工作者节点WN1可与多个电子装置连接,且此多个电子装置相对于工作者节点WN1为本地端装置。在一些实施例中,不可共享资源NSR1仅用于服务本地端装置,亦即,仅用于回应来自本地端装置的请求RQ1,而可共享资源SR1可用于服务来自所有工作者节点WN1、…、WNi及主责节点MN上的电子装置的资源使用请求。
[0060] 资源监视器RM1用于记录资源池RP1的使用状况,并产生资源用量监视数据RD1。举例而言,资源监视器RM1可长时间持续收集多个电子装置ED1(亦即,本地端装置)的资源使用请求RQ1,以作为资源用量监视数据RD1。
[0061] 收集器代理模块CA1用于传送所产生的资源用量监视数据RD1,流量引导推理模块TS1接收资源用量监视数据RD1,并依据资源用量监视数据RD1计算不可共享资源NSR1的权重比例WNSR1及可共享资源SR1的权重比例WSR1,以产生许可控制策略。如前所述,资源用量监视数据RD1是通过资源监视器RM1长时间持续收集的,且可包括收集本地端装置的资源使用请求对应的时间点。因此,流量引导推理模块TS1可进一步取得当前时间,并依据此当前时间及资源用量监视数据RD1中对应此当前时间的资源使用请求的数量,进而计算不可共享资源NSR1的权重比例WNSR1及可共享资源SR1的权重比例WSR1。
[0062] 例如,若当前时间对应于本地端装置的资源使用请求的数量较多的时段,则倾向保留较多的不可共享资源NR1,因此,不可共享资源NSR1的权重比例WNSR1将会大于可共享资源SR1的权重比例WSR1。然而,需要说明的是,不可共享资源NSR1的权重比例WNSR1及可共享资源SR1的权重比例WSR1相加将会是1。接着,许可控制策略则是用于使许可控制器AC1据其决定要如何将该些资源使用请求RQ1分配给不可共享资源NSR1及可共享资源SR1。在一些实施例中,流量引导推理模块TS1依据资源用量监视数据RD1计算不可共享资源NSR1及可共享资源SR1的负载量,以产生许可控制策略。举例而言,许可控制策略可包括下列项目:
[0063] 1.若不可共享资源NSR1的负载量小于重载临界值,则将该些资源使用请求RQ1分配给不可共享资源NSR1。
[0064] 2.若不可共享资源NSR1的负载量大于或等于重载临界值,且与该些资源使用请求RQ1相关的随机数值小于或等于不可共享资源NSR1的权重比例WNSR1,则将该些资源使用请求RQ1分配给不可共享资源NSR1。换言之,在重载的情形下,将当前待决定的资源使用请求RQ1关联于介于0至1之间的一随机数值,并将此随机数值与不可共享资源NSR1的权重比例WNSR1进行比较。
[0065] 3.若不可共享资源NSR1的负载量大于或等于重载临界值,且与该些资源使用请求RQ1相关的随机数值大于不可共享资源NSR1的权重比例WNSR1,则将该些资源使用请求RQ1分配给可共享资源SR1。
[0066] 4.若该些资源使用请求RQ1的数量大于资源池RP1的当前可使用资源量,则拒绝该些资源使用请求。
[0067] 因此,许可控制器AC1依据上述许可控制策略将该些资源使用请求RQ1分配给不可共享资源NSR1及可共享资源SR1。需要说明的是,如图1所示的临界值调整器TA1是用于调整可共享资源SR1及不可共享资源NSR1的分配比例,然而,在下文将要描述的内部资源管理流程中,将不使用临界值调整器TA1。
[0068] 请参考图2及图3,图2为根据本发明实施例的内部资源管理流程示意图,图3为根据本发明的内部资源管理流程的流程图。如图所示,在此配置下,可对工作者节点WN1的资源池RP1、资源监视器RM1、收集器代理模块CA1、流量引导推理模块TS1、请求处理模块RH1、许可控制器AC1及临界值调整器TA1等模块执行一内部资源管理流程,以将资源管理及负载平衡等机制进行管线化。内部资源管理流程包括:
[0069] 步骤S30:配置资源池RP1以将对应的系统资源划分为可共享资源SR1及不可共享资源NSR1。
[0070] 步骤S31:配置资源监视器RM1以记录资源池RP1的使用状况,并产生资源用量监视数据RD1。
[0071] 步骤S32:配置收集器代理模块CA1以将资源用量监视数据RD1传送至流量引导推理模块TS1。
[0072] 步骤S33:配置流量引导推理模块TS1接收资源用量监视数据RD1,并依据该资源用量监视数据RD1计算不可共享资源NSR1及可共享资源SR1的权重比例,以产生许可控制策略。
[0073] 步骤S34:配置请求处理模块接收来自多个电子装置的多个资源使用请求。
[0074] 步骤S35:配置许可控制器依据许可控制策略将该些资源使用请求分配给不可共享资源及可共享资源。
[0075] 因此,内部资源管理流程可达成快速及低延迟的分布式资源管理架构及可管道化(Pipeline)同步执行机制,使本地端请求可以立即使用本地端资源,可进一步避免在无网络传输环境及集中决策机制中可能发生的延迟情形。
[0076] 请再参考图1,以下进一步说明本发明的资源管理系统1的主责节点MN。如图1所示,主责节点MN具有与工作者节点WN1、…、WNi相同的架构,因此可用于处理相对于主责节点MN的本地端请求。除此之外,主责节点MN还包括数据收集器DC、人工智能计算模块AI及负载平衡器LB。
[0077] 数据收集器DC从工作者节点WN1、…、WNi的收集器代理模块CA1、…、CAi及主责节点的收集器代理模块CA0接收资源用量监视数据RD0、RD1、…、RDi,以产生资源用量统计数据RS。
[0078] 人工智能计算模块AI经配置以将资源用量统计数据RS输入经训练的人工智能模型,以产生分别用于分配工作者节点WN1、…、WNi的资源池RP1、…、RPi及主责节点MN的资源池RP0的临界值数据。经训练的人工智能模型是经由对人工智能模型AIM以历史资源用量统计数据HIS进行训练所产生。在本发明实施例中,人工智能模型AIM可为类神经网络模型。
[0079] 请参考图4,其为根据本发明实施例的类神经网络模型的示意图。如图4所示,类神经网络模型包括输入层Inp、输出层Out及多个隐含层hid1、hid2、hid3,且输入层Inp、输出层Out及隐含层hid1、hid2、hid3各包括多个神经元。以图4举例,输入层Inp及输出层Out各包括15个神经元,而输入的历史资源用量统计数据HIS包括使用者需求资源d1~d3、不可共享资源剩余资源Nb1~Nb3、可共享资源剩余资源Sb1~Sb3、时间信息C1~C3、在特定时间Tx的资源使用状态O1-Tx~O3-Tx。
[0080] 换言之,可从历史资源用量统计数据HIS的各字段取出3笔数据作为前述的使用者需求资源d1~d3、不可共享资源剩余资源Nb1~Nb3、可共享资源剩余资源Sb1~Sb3、时间信息C1~C3、在特定时间(Tx)的资源使用状态O1-Tx~O3-Tx来对类神经网络模型进行训练,并且给予类神经网络模型对应的优化计算量分配方式(如图4中的输出向量z[1][1]~z[1][5]、…、z[3][1]、…、z[3][5]),最终可产生经训练的人工智能模型。
[0081] 接者,将长期进行数据收集而产生的资源用量统计数据RS输入如图4的多层类神经网络以及选定的人工智能/或机器学习模型,所输出的临界值数据可应用于主责节点MN及工作者节点WN1、…、WNi的资源池RP0、RP1、…、RPi,例如,每经过特定时间依据不可共享资源NSR与可共享资源SR之间的不同分配比例来调整临界值调整器TA0、TA1、…、TAi。需要说明的是,以工作者节点WN1为例,上述提到的分配比例指的是经过临界值调整器TA1依据人工智能/或机器学习模型所输出的临界值数据调整资源池RP1后所得到可共享资源SR0与不可共享资源NSR0的比例,且分配比例不同于上文中提到的权重比例,不可共享资源NSR1的权重比例WNSR1及可共享资源SR1的权重比例WSR1可用于使许可控制器AC1据以决定如何将许可控制器AC1所接收到的多个资源使用请求RQ1分别分配给可共享资源SR0与不可共享资源NSR0两者其中之一。
[0082] 也因此,通过人工智能的大数据分析实现的资源临界值动态调整机制,可以帮助负载较大的工作节点经由程序执行位置的vAPP转移(virtual App Migration)及增加不可共享资源的比例,达到负载平衡和资源使用优化的目的。
[0083] 在依据临界值数据决定资源池RP0、RP1、…、RPi中的不可共享资源与可共享资源的分配比例之后,负载平衡器LB可进一步将主责节点MN及工作者节点WN1、…、WNi中,在前述的内部资源管理流程中分配至可共享资源SR0、SR1、…、SRi中的资源使用请求RQ0、RQ1、…、RQi平衡分配至主责节点WN及工作者节点WN1、…、WNi的可共享资源SR0、SR1、…、SRi。
[0084] 因此,在上述架构下,可针对主责节点MN及工作者节点WN1、…、WNi执行一外部资源管理流程。请进一步参考图5及图6,图5为根据本发明实施例的外部资源管理流程的示意图,图6为根据本发明实施例的外部资源管理流程的流程图。如图所示,外部资源管理流程包括:
[0085] 步骤S60:配置数据收集器DC从主责节点MN及工作者节点WN1、…、WNi的收集器代理模块CA0、CA1、…、CAi接收资源用量监视数据RD0、RD1、…、RDi,以产生资源用量统计数据RS。
[0086] 步骤S61:配置人工智能计算模块AI以将资源用量统计数据RS输入经训练的人工智能模型,以产生分别用于分配主责节点MN及工作者节点WN1、…、WNi的资源池RP0、RP1、…、RPi的优化临界值数据。
[0087] 步骤S62:配置主责节点MN及工作者节点WN1、…、WNi的流量引导推理模块TS0、TS1、…、TSi以依据优化临界值数据分别控制对应的临界值调整器TA0、TA1、…、TAi调整资源池RP0、RP1、…、RPi的可共享资源SR0、SR1、…、SRi及不可共享资源NSR0、NSR1、…、NSRi的分配比例。
[0088] 步骤S63:配置负载平衡器LB以将主责节点MN及工作者节点WN1、…、WNi中分配至可共享资源SR0、SR1、…、SRi中的资源使用请求RQ0、RQ1、…、RQi平衡分配至主责节点WN及工作者节点WN1、…、WNi的可共享资源SR0、SR1、…、SRi。
[0089] [实施例的有益效果]
[0090] 本发明的其中一有益效果在于,本发明所提供的资源管理系统及资源管理方法,具有创新的分布式资源管理架构,可混合应用集中式与分布式资源管理机制。其中,内部资源管理流程实现了快速及低延迟的分布式资源管理架构及可管道化(Pipeline)同步执行机制,同时,以资源池的架构为基础,实现可调整的可共享资源及不可共享资源的动态比例调整。
[0091] 此外,本发明所提供的资源管理系统及资源管理方法通过整合每一个工作者节点的可共享资源以形成可共享资源池架构,其兼容于现有的集中式资源管理机制。另一方面,外部资源管理流程利用人工智能的大数据分析,进一步实现了资源临界值动态调整机制,可调整可共享资源及不可共享资源的分配比例。
[0092] 针对效能及资源使用率方面,本发明所提供的资源管理系统及资源管理方法具有分布式内部资源管理流程与可管道化(Pipeline)同步执行机制,使本地端请求可以立即使用本地端资源,可进一步避免在无网络传输环境及集中决策机制中可能发生的延迟情形。
[0093] 再者,通过人工智能的大数据分析实现的资源临界值动态调整机制,可以帮助负载较大的工作节点经由程序执行位置的vAPP转移(virtual App Migration)及增加不可共享资源的比例,达到负载平衡和资源使用优化的目的。
[0094] 以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的范围,所以凡是运用本发明说明书及附图内容所作的等同技术变化,均包含于本发明的权利要求书的范围内。

当前第1页 第1页 第2页 第3页
相关技术
管理系统相关技术
系统资源相关技术
杨人顺发明人的其他相关专利技术