首页 / 车辆用驱动装置

车辆用驱动装置有效专利 发明

技术领域

[0001] 本技术涉及例如搭载于汽车等车辆的车辆用驱动装置。

相关背景技术

[0002] 以往,搭载了具有变速机构等的车辆用驱动装置的汽车等车辆正在普及。使用于这样的车辆用驱动装置的变速机构等传递机构会具有例如行星齿轮和变速用行星齿轮单元等可动部。由于这样的可动部在行驶中发热,因此,将由油泵生成的油压作为润滑油从油压控制装置向可动部供给,来进行可动部的润滑和冷却。
[0003] 已知一种具有油压控制装置的车辆用驱动装置,由于传递机构中的发热例如在变速时较大,而在不进行变速的稳定行驶时比变速时小,因此,所述油压控制装置能够将从油压控制装置向传递机构供给的润滑油的供给量,根据时机切换成大流量和小流量(例如,参照专利文献1)。在该车辆用驱动装置中,例如,在传递机构的发热较大时,通过将从油压控制装置向传递机构供给的润滑油的供给量切换成大流量来防止过热,而在传递机构的发热较小时,通过将供给量切换成小流量来提高燃料消耗率。
[0004] 现有技术文献
[0005] 专利文献
[0006] 专利文献1:日本特开2018‑146019号公报

具体实施方式

[0018] 下面,基于图1~图4说明本发明的混合动力车辆100的实施方式。在本实施方式中,驱动连接是指,彼此的旋转构件以能够传递驱动力的方式连接的状态,并且作为包括这些旋转构件以一体旋转的方式连接的状态,或者这些旋转构件以通过离合器等能够传递驱动力的方式连接的状态的概念使用。
[0019] 如图1所示,混合动力车辆100具有作为左右的前轮(车轮)11的驱动系统的作为驱动源的一例的发动机(E/G)2和连接于发动机2的输出轴2a的混合动力驱动装置(车辆用驱动装置)3,并且具有作为左右的后轮12的驱动系统的后置电机(M/G)20。由此,前轮11能够进行所谓的单电机并联式混合动力行驶,而后轮12能够进行EV行驶,并且通过同时驱动前轮11和后轮12,还能够进行四轮驱动。此外,在本实施方式中,对混合动力车辆100具有能够驱动后轮12的后置电机20的情况进行了说明,但不限于此,也可以没有后置电机20。
[0020] 首先,对前轮11的驱动系统进行说明。混合动力驱动装置3的输出轴5b与未图示的差速装置驱动连接,从差速装置经由左右的驱动轴11a向左右的前轮11传递驱动力。发动机2基于来自后述的ECU7的指令,自由地控制发动机转速Ne、发动机扭矩Te。另外,在发动机2的输出轴2a的外周侧设置有检测该输出轴2a的转速即发动机转速Ne的发动机转速传感器
41。
[0021] 混合动力驱动装置3构成为,大致包括发动机连接用的离合器SSC、电动发电机(M/G、驱动源、旋转电机)4、变速机构(A/T、传递机构)5以及控制这些的ECU(控制部)7。离合器SSC介于发动机2的输出轴2a与电动发电机(以下,简称为“电机”)4的转子轴(旋转轴)4a之间,并且可以使它们摩擦接合。即,离合器SSC介于发动机2的输出轴2a与变速机构5的输入轴5a之间,并且设置为能够使它们的动力传递连接或切断。离合器SSC基于来自ECU7的指令,根据从油压控制装置(V/B)6供给的离合器油压PSSC,自由地控制接合状态,并且还自由地控制其扭矩容量。
[0022] 电机4设置在离合器SSC与变速机构5的输入轴5a之间、即发动机2的输出轴2a与变速机构5的输入轴5a之间的动力传递路径上。电机4包括省略图示的定子和转子,连接有该转子的转子轴4a与离合器SSC的输出侧驱动连接。电机4基于来自ECU7的指令,自由地控制电机转速Nm、电机扭矩Tm(从电机4输出的扭矩)。另外,在电机4的转子轴4a的外周侧设置有检测该转子轴4a的转速、即电机转速Nm的电机转速传感器42。转子轴4a与变速机构5的输入轴5a直接驱动连接。
[0023] 电机4经由逆变器22与电池23连接。由此,从电池23输出的电力经由逆变器22供给到电机4,从而电机4被驱动。另外,当在发动机2的作用下行驶时或惯性行驶时,通过使电机4空转,能够产生电力并向电池23充电。
[0024] 变速机构5设置于发动机2与前轮11之间的动力传递路径上,具有由发动机2驱动的输入轴(输入构件)5a和与前轮11驱动连接的输出轴5b,该变速机构5能够变更输入轴5a与输出轴5b之间的变速比。变速机构5例如由具有行星齿轮和变速用行星齿轮单元等未图示的可动部的有级式变速器构成,并且构成为通过基于从油压控制装置6供给的油压变更多个摩擦接合构件(离合器或制动器)的摩擦接合状态,变更传递路径来进行变速比的变更。另外,变速机构5具有润滑油路(LUBE)5L(参照图2)。从油压控制装置6供给到润滑油路5L的润滑油对变速机构5的行星齿轮和变速用行星齿轮单元等可动部进行润滑和冷却。
[0025] 变速机构5具有作为多个摩擦接合构件中的一部分的第一离合器C1、未图示的第二离合器、制动器等。第一离合器C1构成为自由地连接或切断输入轴5a与输出轴5b之间的动力传递,并且能够在分离状态、打滑接合状态、完全接合状态的各状态中进行切换并摩擦接合。第一离合器C1基于来自ECU7的指令,根据从油压控制装置6供给的第一离合器油压PC1,自由地控制接合状态,并且还自由地控制其扭矩容量。
[0026] 另外,在变速机构5的输入轴5a的外周侧设置有检测该输入轴5a的转速、即输入转速(在本实施方式中与电机转速Nm相同)的输入转速传感器43。而且,在变速机构5的输出轴5b的外周侧设置有检测该输出轴5b的转速、即输出转速Nout的输出转速传感器44。如上所述,输出轴5b通过差速装置等与前轮11驱动连接,因此,输出转速传感器44也可以用于检测车速V。
[0027] 此外,在本实施方式中,说明了第一离合器C1例如通过与未图示的单向离合器一起变为接合状态来实现前进一档,即通过仅使一个第一离合器C1接合来实现变速机构5的前进一档。但并不限于此,例如还可以与其他摩擦接合构件一起同时接合而实现前进一档至前进三挡那样的可起步的变速档。
[0028] 另外,在本实施方式中,将变速机构5作为有级变速器进行说明,但是也可以是例如带式、环式、锥环式等无级变速器,在该情况下,可以将第一离合器C1理解为是内置于无级变速器的能够使动力传递连接或切断的离合器。
[0029] 另外,上述离合器SSC和第一离合器C1是可传递的扭矩容量的大小因按压两个以上摩擦接合构件的油压大小可变的能够摩擦接合的构件,通常构成为,包括按压这些摩擦接合构件的活塞、按压该活塞的油缸以及对油缸向相反方向作用的回动弹簧。但是,不限于这样的结构,还可以是利用相对缸所产生的压差来驱动活塞的结构,或者还可以是利用通过油压促动器移动的臂等来按压摩擦接合构件的结构。此外,在本实施方式中,对离合器SSC和第一离合器C1等是被油压控制的摩擦接合构件的情况进行了说明,但不限于此,例如还可以应用电磁离合器等。
[0030] 如上所述,上述离合器SSC和第一离合器C1的状态由油压的大小控制,可以划分为,摩擦接合构件彼此分离的“分离状态”、一边打滑一边产生传递的扭矩容量的“打滑接合状态”以及通过尽可能加大油压来使摩擦接合构件彼此紧固连接的“完全接合状态”。此外,可以将“打滑接合状态”定义为,从活塞在分离状态下产生行程而到达与摩擦接合构件接触的行程末端之后到摩擦接合构件彼此的转速同步为止的期间,可以将“分离状态”定义为,活塞未到达行程末端并与摩擦接合构件分离的状态。
[0031] 另外,混合动力驱动装置3包括机械式油泵(MO/P)30(参照图2)和可以通过电信号来控制喷出量的电动油泵(EO/P)31(参照图2)。机械式油泵30设置在与变速机构5的输入轴5a平行配置的传递轴上。机械式油泵30通过链条等连接于输入轴5a,输入轴5a的动力经由传递轴传递到该机械式油泵30来驱动该机械式油泵30。电动油泵31与机械式油泵30独立地,由与发动机2和电机4不同的电机来驱动。
[0032] 如图2所示,油压控制装置6例如由阀体构成,包括:调节阀32,基于来自ECU7的控制信号,将来自机械式油泵30、电动油泵31的油压调整为主压PL;流量切换阀35,能够向变速机构5的润滑油路5L供给润滑油,用于切换润滑油的供给量;以及信号电磁阀SR,能够供给用于切换流量切换阀35的信号压PSR。另外,油压控制装置6具有基于来自ECU7的控制信号,向第一离合器C1、离合器SSC、后述的电机分离离合器CM以及其他各接合构件供排油压的线性电磁阀,从而能够向各个接合构件供排油压。
[0033] 调节阀32具有被弹簧32s施力的未图示的阀柱,在阀柱的一端具有反馈端口32a、主压端口32b以及背压端口32c。来自基于节气门开度进行控制的线性电磁阀的控制压PSLT向配置有弹簧32s的油室供给。来自机械式油泵30的油经由止回阀33并经由主压油路a1向反馈端口32a和主压端口32b供给,阀柱通过反馈端口32a的反馈压和油室的控制压PSLT移动,调整主压端口32b与背压端口32c之间的连通比例,由此主压端口32b被调压为与节气门开度相对应的主压PL。来自背压端口32c的润滑油压P1连通于油路b1。止回阀33允许油压PMOP从机械式油泵30向调节阀32流通,并且限制油压向相反一侧流通。
[0034] 另外,电动油泵31经由止回阀34连接于主压油路a1。该止回阀34介于机械式油泵30与电动油泵31之间,并且允许油压PEOP从电动油泵31向调节阀32流通,限制油压向相反一侧流通。
[0035] 流量切换阀35是包括未图示的阀柱和弹簧35s的滑阀,阀柱根据从信号电磁阀SR供给的信号压PSR与弹簧35s的作用力之间的关系而移动,由此进行输出的油压的切换。流量切换阀35具有用于向通过信号压PSR切换阀柱的方向施加按压力的动作油室35a、从油路b1输入润滑油压P1的输入端口35b、经由油路b2连接于润滑油路5L的输出端口35c以及切断端口35d等。另外,在油路b2上设置有油压开关(PSW)36。
[0036] 信号电磁阀SR例如是常闭型电磁阀,包括供给调节压Pmod的输入端口SRa和与流量切换阀35的动作油室35a连接的输出端口SRb,在ECU7的控制下,基于调节压Pmod生成信号压PSR而向动作油室35a供排工作油。此外,在本实施方式中,说明了油压开关36设置于油路b2的情况,但不限于此。例如,还可以作为油压传感器,设置在信号电磁阀SR的输出端口SRb与流量切换阀35的动作油室35a之间的油路,而非设置在油路b2。
[0037] 当信号电磁阀SR在断开状态下不从输出端口SRb输出信号压PSR时,在流量切换阀35中,输入端口35b和输出端口35c连通,从而来自油路b1的润滑油压P1经由流量切换阀35向润滑油路5L供给。另外,当信号电磁阀SR在接通状态下从输出端口SRb输出信号压PSR时,在流量切换阀35中,输入端口35b和切断端口35d连通,从而来自油路b1的润滑油压P1无法经由流量切换阀35向润滑油路5L供给。
[0038] 另一方面,油路b1经由节流孔37和油路b3连接于润滑油路5L。因此,来自油路b1的润滑油压P1一边被被节流孔37节流,一边经由油路b3始终向润滑油路5L供给。因此,当信号电磁阀SR处于断开状态时,从油路b2和油路b3向润滑油路5L供给大流量的润滑油,而当信号电磁阀SR处于接通状态时,仅从油路b3向润滑油路5L供给小流量的润滑油。
[0039] 接着,对后轮12的驱动系统进行说明。如图1所示,后置电机20经由逆变器24连接于电池23,并且构成为基于来自ECU7的驱动指令被逆变器24电力控制而自由驱动和再生。后置电机20经由电机分离离合器CM与齿轮箱21驱动连接。在齿轮箱21中,内置有未图示的规定减速比的减速齿轮机构和差速装置,当电机分离离合器CM接合时,将后置电机20的旋转以一边通过齿轮箱21的减速齿轮机构减速,并且一边通过差速装置来吸收左右的车轴
12a的旋转差的方式,向左右的后轮12传递。
[0040] 在前轮11和后轮12中的至少一方设置有制动机构13(参照图3)。在本实施方式中,制动机构13设置于前轮11和后轮12这两者。制动机构13连接于油压控制装置6,通过制动踏板的操作来驱动,另外,除了制动踏板的操作之外,还可以通过与状况对应的ECU7的判断从油压控制装置6供给油压,来对前轮11和后轮12进行制动。
[0041] 如图3所示,ECU7例如具有CPU71、存储处理程序的ROM72、临时存储数据的RAM73、输入输出电路(I/F)74,输出向油压控制装置6的控制信号、向逆变器22、24的控制信号等各种电气指令。ECU7连接有检测发动机2的输出轴2a的转速的发动机转速传感器41、检测电机4的转子轴4a的转速的电机转速传感器42、检测变速机构5的输入轴5a的转速的输入转速传感器43、检测变速机构5的输出轴5b的转速的输出转速传感器44等,以检测离合器SSC等的接合状态。ECU7经由未图示的发动机控制部向发动机2发出指令,自由地控制发动机转速Ne、发动机扭矩Te。另外,ECU7经由逆变器22对电机4进行电力控制,通过转速控制来自由地控制电机转速Nm,通过扭矩控制来自由地控制电机扭矩Tm,并且经由逆变器24对后置电机
20进行电力控制,通过转速控制来自由地控制电机转速,通过扭矩控制来自由地控制电机扭矩。
[0042] ECU7连接于油压控制装置6,能够向油压控制装置6输出电气指令,以增加供给到变速机构5的润滑油的流量,另外,能够获取油压开关36的检测结果。ECU7通过输出用于从油压控制装置6向制动机构13供给油压的电气指令,来向制动机构13供给油压,从而能够对前轮11和后轮12进行制动。
[0043] 在如以上那样构成的混合动力车辆100中,如图1所示,当使用发动机2和/或电机4的驱动力行驶时,从混合动力驱动装置3输出的动力传递到前轮11,并且电机分离离合器CM被分离,从而后置电机20处于与后轮12分离的状态。并且,在变速机构5中,通过由ECU7根据换挡挡位、车速以及油门开度判断出最佳的变速档,来对油压控制装置6进行电子控制,由此形成基于该变速判断形成的变速档。另外,当从混合动力驱动装置3输出的动力传递到前轮11时,通过使电机分离离合器CM接合来驱动后置电机20,能够实现四轮驱动。
[0044] 另外,在该混合动力车辆100中,如图2所示,在不变速的稳定行驶时,通过使信号电磁阀SR变为接通状态,来使流量切换阀35的输入端口35b和切断端口35d连通,由此切断油路b1和油路b2的连接。由此,仅从油路b3向润滑油路5L供给小流量(第一流量)的润滑油(第一供给模式),从而能够抑制润滑油的过剩的流通而提高燃料消耗率。另外,例如在行驶中进行变速时,由于变速机构5的可动部比稳定行驶时更发热,因此,通过使信号电磁阀SR变为断开状态,来使流量切换阀35的输入端口35b和输出端口35c连通,由此连接油路b1和油路b2,从而使润滑油压P1向油路b2流通。由此,向润滑油路5L供给从油路b2和油路b3合流的大流量(第二流量)的润滑油(第二供给模式),从而能够充分地冷却变速机构5的可动部。即,ECU7能够向油压控制装置6输出电气指令,以选择性地执行从油压控制装置6供给到变速机构5的流量为小流量的润滑油的第一供给模式和使从油压控制装置6供给到变速机构5的流量增加为大流量的第二供给模式。
[0045] 接着,基于图4的时序图说明在本实施方式的混合动力车辆100的行驶中,一边停止发动机2的驱动而通过电机4进行再生一边进行惯性行驶的情况的各部的动作。如图4所示,在时刻t0,在使离合器SSC变为完全接合状态以停止发动机2的驱动而使发动机制动器动作时的惯性行驶中,电机4不驱动而进行再生,电机分离离合器CM成为分离的状态。此时,处于不进行变速的稳定行驶,变速机构5的可动部的发热较小,因此,从油压控制装置6向变速机构5的润滑油路5L供给的润滑油的供给量为小流量。
[0046] 在该状态下,将从前轮11传递到发动机2和电机4的变速机构5的扭矩作为负扭矩。在本实施方式中,将负扭矩的大小定义为如下。首先,负扭矩变大是指,负扭矩远离0,即变负。另外,负扭矩变小是指,负扭矩向0接近、即变正。也就是说,在本实施方式中,负扭矩的大小与负扭矩的绝对值的大小同义,“负扭矩的大小”可以与“负扭矩的绝对值”彼此替换。
并且,ECU7将限制负扭矩的大小(绝对值)的界限值设定为负扭矩限制值,以使负扭矩不会变得过大。在时刻t0,由于稳定行驶时变速机构5的可动部的发热较小,因此即使负扭矩变大,可动部发生过热可能性也较小,从而将负扭矩限制值设定为较大,即向负值侧较大地设定。
[0047] 另外,如果负扭矩限制值变小而成为0,则无法通过电机4来进行再生,或者无法进行发动机制动,因此,负扭矩最终限制值设定为比0更靠向负值侧,以免负扭矩限制值变得过小,并且使负扭矩不会变得更小。此外,负扭矩最终限制值根据车速等行驶状态而变化。
[0048] 另外,ECU7通过考虑车速、油门踏板和制动踏板的操作量、变速状态等,来设定电机4和发动机2的驱动扭矩要求值。而且,ECU7基于驱动扭矩要求值和负扭矩限制值,设定电机4和发动机2的实际的输出扭矩(实际扭矩)。在时刻t0,由于驱动扭矩要求值小于负扭矩限制值,因此,实际扭矩不受负扭矩限制值的限制,驱动扭矩要求值和实际扭矩大致一致。
[0049] 例如,在预想为了进行变速而变速机构5的可动部的发热变大的情况下,为了向可动部供给更多的润滑油,ECU7输出用于使从油压控制装置6向变速机构5的润滑油路5L供给的润滑油的供给量变大的电气指令。在此,假设变为信号电磁阀SR或流量切换阀35发生阀门卡死,而导致流量切换阀35无法切换,从而润滑油压P1无法在油路b2流通,继而油压开关36无法检测油压的异常状态。在该情况下,尽管输出电气指令以使从信号电磁阀SR输出信号压PSR,但ECU7判定为油压开关36未检测油压,由此检测出发生了所希望的润滑油压P1没有从油路b2输出的异常状态,并且认为发生了故障,将异常状态标记设为ON(时刻t1)。
[0050] 在该状态下,如果变速机构5的可动部的发热量变大,则由于润滑油的供给量为小流量,因此可动部会过热,从而不优选。因此,在本实施方式中,ECU7在时刻t1为了限制变速机构5的负扭矩,将负扭矩限制值降低到驱动扭矩要求值,然后,再使负扭矩限制值以规定的梯度逐渐减小。此外,由于负扭矩限制值的值为负值,因此作为数值的大小提高,进行上升(sweep‑up)。即,ECU7在开始使变速机构5的负扭矩的大小变小的限制时(时刻t1),使负扭矩限制值以规定的梯度变小。当负扭矩限制值达到负扭矩最终限制值时,如果使负扭矩限制值进一步下降,则再生效率会显著降低,因此,停止负扭矩限制值的下降(时刻t2)。之后,负扭矩限制值以与负扭矩最终限制值取相同值的方式变化。
[0051] 另一方面,通过限制变速机构5的扭矩来使负扭矩限制值变小而驱动扭矩要求值超过负扭矩限制值时即比负扭矩限制值更靠负值侧时(时刻t1‑t3),ECU7使电机4和发动机2的实际扭矩根据负扭矩限制值以规定的梯度逐渐降低(时刻t1‑t2),之后,根据负扭矩最终限制值使其变化(时刻t2‑t3)。然后,当驱动扭矩要求值再次小于负扭矩限制值时,即比负扭矩限制值更靠正值侧时(时刻t3‑),ECU7使电机4和发动机2的实际扭矩根据驱动扭矩要求值而变化。
[0052] 在本实施方式中,ECU7通过对电机4进行供电控制来控制再生扭矩,由此使实际扭矩变化。或者,例如还可以通过发动机2的阀控制等来控制输出轴2a的扭矩,或者通过使变速档升档来使实际扭矩变化。即,ECU7能够通过使电机4、发动机2中的扭矩的负荷变小,来执行使变速机构5的负扭矩的大小变小的限制。尤其在本实施方式中,ECU7能够通过控制电机4的再生扭矩和发动机2的输出扭矩中的至少一方,来执行使变速机构5的负扭矩的大小变小的限制。
[0053] 即,ECU7当向油压控制装置6输出电气指令以增加向变速机构5供给的润滑油的流量时,在判定为从油压控制装置6向变速机构5供给的润滑油的流量未按照电气指令增加的情况下,则认为油压控制装置6处于异常状态,能够执行使从前轮11向电机4和发动机2传递的变速机构5的负扭矩的大小变小的限制。在本实施方式中,ECU7当在第一供给模式的执行中向油压控制装置6输出电气指令以切换到第二供给模式执行时,在判定为油压控制装置6未切换到第二供给模式的情况下,则认为油压控制装置6处于异常状态,能够执行使变速机构5的负扭矩的大小变小的限制。
[0054] 另外,例如,在时刻t1‑t3,变速机构5的负扭矩被限制而比正常状态(时刻t0‑t1等)小,因此,用于使混合动力车辆100减速的制动力降低。因此,需要补偿降低的制动力。因此,在本实施方式中,当ECU7执行使变速机构5的负扭矩的大小变小的限制时,向制动机构13输出电气指令,以通过增大制动机构13的制动力,来补偿因执行限制而减少的用于使混合动力车辆100减速的制动力。
[0055] 另外,在本实施方式中,假设在时刻t4,流量切换阀35不切换的异常状态因某种原因而消除。作为异常状态消除的状况,例如可以举出,在保持将从油压控制装置6向变速机构5的润滑油路5L供给的润滑油的供给量变为大流量的要求的状态下,流量切换阀35进行了切换,或者,没有了将从油压控制装置6向变速机构5的润滑油路5L供给的润滑油的供给量变为大流量的要求而保持小流量即可的情况等。在这样的情况下,ECU7将异常状态标记变为关闭,在经过规定时间之后,在时刻t5,将正常状态标记变为开启。
[0056] 另外,在这样的情况下,不需要像时刻t1‑t5那样通过限制变速机构5的负扭矩来使负扭矩限制值变小,为了确保制动力解除负扭矩的限制来使负扭矩限制值变大(时刻t5)。在此,使负扭矩限制值以规定的梯度逐渐变大。此外,由于负扭矩限制值的值为负值,因此作为数值的大小降低,进行下落(sweep‑down)。因此,在ECU7判定为油压控制装置6处于异常状态的状态下(时刻t1),在向油压控制装置6输出电气指令以增加向变速机构5供给的润滑油的流量时(时刻t1‑t5),如果判定为从油压控制装置6向变速机构5供给的润滑油的流量按照电气指令增加(时刻t5),则认为油压控制装置6从异常状态切换到了正常状态,从而可以解除使变速机构5的负扭矩的大小变小的限制(时刻t5‑t6)。尤其在本实施方式中,ECU7在解除使变速机构5的负扭矩的大小变小的限制时,使负扭矩限制值以规定的梯度变大。
[0057] 如果负扭矩限制值相对于驱动扭矩要求值超过规定的差分而充分大地分开变大(时刻t6),则判断为变速机构5不会发生过热,从而停止下落而将负扭矩限制值设定为与时刻t0相同的大小。然后,混合动力车辆100进行稳定行驶。
[0058] 如上所述,根据本实施方式的混合动力驱动装置3,当ECU7向油压控制装置6输出电气指令以增加向变速机构5供给的润滑油的流量时,如果判定为从油压控制装置6向变速机构5供给的润滑油的流量未按照电气指令增加,则认为油压控制装置6处于异常状态,可以执行使变速机构5的负扭矩的大小变小的限制。因此,在与变速机构5的发热量变大对应地增加向变速机构5供给的润滑油的供给量时,即使发生未增加至所希望的供给量的异常状态,也能够防止变速机构5的过热。
[0059] 另外,根据本实施方式的混合动力驱动装置3,当ECU7在第一供给模式的执行中向油压控制装置6输出电气指令以切换到第二供给模式执行时,如果判定为油压控制装置6未切换到第二供给模式,则认为油压控制装置6处于异常状态,从而可以执行使变速机构5的负扭矩的大小变小的限制。因此,在具有供给量为小流量的第一供给模式和供给量为大流量的第二供给模式的油压控制装置6中,当与变速机构5的发热量变大对应地从第一供给模式切换到第二供给模式时,即使发生未切换到第二供给模式的异常状态,也能够防止变速机构5的过热。
[0060] 另外,根据本实施方式的混合动力驱动装置3,ECU7通过使发动机2和电机4中的扭矩的负荷变小,能够执行使变速机构5的负扭矩的大小变小的限制。尤其,根据本实施方式的混合动力驱动装置3,ECU7通过控制电机4的再生扭矩和发动机2的输出扭矩中的至少一方,能够执行使变速机构5的负扭矩的大小变小的限制。因此,ECU7能够限制变速机构5的负扭矩,而不伴随发热较大的变速机构5的变速动作。
[0061] 另外,根据本实施方式的混合动力驱动装置3,ECU7在开始执行使变速机构5的负扭矩的大小变小的限制时,使负扭矩限制值以规定的梯度变小。因此,与使负扭矩限制值急剧变小的情况、即使负扭矩限制值向正值侧变化的情况相比,能够抑制用于使混合动力车辆100减速的制动力的急剧降低。
[0062] 另外,根据本实施方式的混合动力驱动装置3,ECU7在限制负扭矩限制值之后,当判定为油压控制装置6的异常状态消除而处于正常状态时,可以解除使变速机构5的负扭矩的大小变小的限制。因此,能够再次确保基于发动机2和电机4的制动力,从而能够实现驾驶员所希望的行驶。
[0063] 另外,根据本实施方式的混合动力驱动装置3,ECU7在解除使变速机构5的负扭矩的大小变小的限制时,使负扭矩限制值以规定的梯度变大。因此,与使负扭矩限制值急剧变大的情况、即使负扭矩限制值向负值侧变化的情况相比,能够抑制用于使混合动力车辆100减速的制动力的急剧上升。
[0064] 另外,根据本实施方式的混合动力驱动装置3,当ECU7执行使变速机构5的负扭矩的大小变小的限制时,向制动机构13输出电气指令,以通过使能够制动前轮11的制动机构13的制动力变大,来补偿因执行限制而减少的用于使混合动力车辆100减速的制动力。因此,通过使制动机构13的制动力变大,能够补偿用于使混合动力车辆100减速的制动力,从而能够抑制驾驶性能的降低。
[0065] 此外,在上述的本实施方式中,混合动力驱动装置3是搭载于单电机并联式的混合动力车辆100的车辆用驱动装置,但不限于此。作为车辆用驱动装置,只要至少包括变速机构5和油压控制装置6,并且能够切换向变速机构5的润滑油路5L供给的流量,就可以应用。
[0066] 另外,在上述的本实施方式中,说明了当ECU7执行使变速机构5的负扭矩的绝对值变小的限制时,通过使制动机构13的制动力变大,来补偿因执行限制而减少的用于使混合动力车辆100减速的制动力的情况,但不限于此。例如,也可以通过使电机分离离合器CM处于接合状态,并通过后置电机20产生再生扭矩,来补偿用于减速的制动力。
[0067] 另外,在上述的本实施方式中,说明了当与变速机构5的发热量变大对应地增加向变速机构5供给的润滑油的供给量时,如果发生未增加至所希望的供给量的异常状态,则ECU7执行使从前轮11向发动机2和电机4传递的变速机构5的负扭矩的绝对值变小的限制的情况,但不限于此。例如,当发生未增加至所希望的供给量的异常状态时,ECU7还可以执行使从发动机2和电机4向前轮11传递的变速机构5的正扭矩的绝对值变小的限制。即,当与变速机构5的发热量变大对应地增加向变速机构5供给的润滑油的供给量时,如果发生未增加至所希望的供给量的异常状态,则ECU7可以执行使在前轮11、发动机2以及电机4之间传递的变速机构5的扭矩的绝对值变小的限制。在该情况下,也可以防止变速机构5的过热。
[0068] 此外,本实施方式至少具有以下的结构。本实施方式的车辆用驱动装置(3)包括:传递机构(5),设置在驱动源(2、4)与车轮(11)之间的动力传递路径上;油压供给部(6),能够向所述传递机构(5)供给润滑油;以及控制部(7),能够向所述油压供给部(6)输出电气指令,以增加向所述传递机构(5)供给的润滑油的流量,所述控制部(7)当向所述油压供给部(6)输出电气指令以增加向所述传递机构(5)供给的润滑油的流量时,若判定为从所述油压供给部(6)向所述传递机构(5)供给的润滑油的流量未按照所述电气指令增加,则认为所述油压供给部(6)处于异常状态,能够执行使在所述车轮(11)与所述驱动源(2、4)之间传递的所述传递机构(5)的扭矩的绝对值变小的限制。
[0069] 根据该结构,当与传递机构(5)的发热量变大对应地增加向传递机构(5)供给的润滑油的供给量时,即使发生未增加至所希望的供给量的异常状态,也能够防止传递机构(5)的过热。
[0070] 另外,在本实施方式的车辆用驱动装置(3)中,当所述油压供给部(6)处于所述异常状态时,所述控制部(7)能够执行使从所述车轮(11)向所述驱动源(2、4)传递的所述传递机构(5)的负扭矩的绝对值变小的限制。根据该结构,当从车轮(11)向驱动源(2、4)传递扭矩时,即使发生未增加至所希望的供给量的异常状态,也可以防止传递机构(5)的过热。
[0071] 另外,在本实施方式的车辆用驱动装置(3)中,所述控制部(7)能够向所述油压供给部(6)输出电气指令,以选择性地执行从所述油压供给部(6)向所述传递机构(5)供给的流量为第一流量的润滑油的第一供给模式和使从所述油压供给部(6)向所述传递机构(5)供给的流量增加至比所述第一流量多的第二流量的第二供给模式,所述控制部(7)当在所述第一供给模式的执行中向所述油压供给部(6)输出电气指令以切换至所述第二供给模式执行时,若判定为所述油压供给部(6)未切换到所述第二供给模式,则认为所述油压供给部(6)处于所述异常状态,能够执行使所述传递机构(5)的所述负扭矩的绝对值变小的限制。
[0072] 根据该结构,在具有供给量为小流量的第一供给模式和供给量为大流量的第二供给模式的油压供给部(6)中,当与传递机构(5)的发热量变大对应地从第一供给模式切换到第二供给模式时,即使发生未切换到第二供给模式的异常状态,也可以防止传递机构(5)的过热。
[0073] 另外,在本实施方式的车辆用驱动装置(3)中,所述控制部(7)通过使所述驱动源(2、4)中的扭矩的负荷变小,能够执行使所述传递机构(5)的所述负扭矩的绝对值变小的限制。根据该结构,控制部(7)能够限制传递机构(5)的负扭矩,而不伴随发热较大的传递机构(5)的变速动作。
[0074] 另外,在本实施方式的车辆用驱动装置(3)中,所述车辆用驱动装置(3)具有作为所述驱动源(2、4)的旋转电机(4),所述旋转电机(4)设置在发动机(2)的输出轴(2a)与所述传递机构(5)的输入构件(5a)之间的动力传递路径上,并且具有与所述传递机构(5)的所述输入构件(5a)驱动连接的旋转轴(4a),所述控制部(7)通过控制所述旋转电机(4)的再生扭矩和所述发动机(2)的输出扭矩中的至少一方,能够执行使所述传递机构(5)的所述负扭矩的绝对值变小的限制。根据该结构,控制部(7)能够限制传递机构(5)的负扭矩,而不伴随发热较大的传递机构(5)的变速动作。
[0075] 另外,在本实施方式的车辆用驱动装置(3)中,所述控制部(7)设定限制所述负扭矩的绝对值的界限值即负扭矩限制值,当开始执行使所述传递机构(5)的所述负扭矩的绝对值变小的限制时,使所述负扭矩限制值以规定的梯度变小。根据该结构,与使负扭矩限制值急剧变小的情况相比,能够抑制用于使车辆(100)减速的制动力的急剧降低。
[0076] 另外,在本实施方式的车辆用驱动装置(3)中,所述控制部(7)在判定为所述油压供给部(6)处于所述异常状态的状态下,当向所述油压供给部(6)输出电气指令以增加向所述传递机构(5)供给的润滑油的流量时,若判定为从所述油压供给部(6)向所述传递机构(5)供给的润滑油的流量已按照所述电气指令增加,则认为所述油压供给部(6)从所述异常状态切换到了正常状态,能够解除使所述传递机构(5)的负扭矩的绝对值变小的限制。根据该结构,能够再次确保基于驱动源(2、4)的制动力,从而能够实现驾驶员所希望的行驶。
[0077] 另外,在本实施方式的车辆用驱动装置(3)中,所述控制部(7)设定限制所述负扭矩的绝对值的界限值即负扭矩限制值,当解除使所述传递机构(5)的所述负扭矩的绝对值变小的限制时,使所述负扭矩限制值以规定的梯度变大。根据该结构,与使负扭矩限制值急剧变大的情况相比,能够抑制用于使车辆(100)减速的制动力的急剧上升。
[0078] 另外,在本实施方式的车辆用驱动装置(3)中,所述控制部(7)当执行使所述传递机构(5)的所述负扭矩的绝对值变小的限制时,向所述制动机构(13)输出电气指令,以通过使能够制动所述车轮(11)的制动机构(13)的制动力变大来补偿因执行所述限制而减少的用于使车辆减速的制动力。
[0079] 根据该结构,控制部(7)能够通过使制动机构(13)的制动力变大来补偿用于使车辆(100)减速的制动力,因此,能够抑制驾驶性能的降低。
[0080] 工业上的可利用性
[0081] 本发明的车辆用驱动装置能够搭载于例如汽车等车辆,例如,适用于单电机并联式的混合动力车辆。
[0082] 附图标记的说明:
[0083] 2:发动机(驱动源)
[0084] 2a:输出轴
[0085] 3:混合动力驱动装置(车辆用驱动装置)
[0086] 4:电动发电机(驱动源、旋转电机)
[0087] 4a:转子轴(旋转轴)
[0088] 5:变速机构(传递机构)
[0089] 5a:输入轴(输入构件)
[0090] 6:油压控制装置(油压供给部)
[0091] 7:ECU(控制部)
[0092] 11:前轮(车轮)
[0093] 13:制动机构
[0094] 100:混合动力车辆(车辆)

当前第1页 第1页 第2页 第3页