首页 / 体积LAT标测图

体积LAT标测图有效专利 发明

技术领域

[0003] 本发明涉及解剖和电生理模型,尤其是心脏的解剖和电生理模型。

相关背景技术

[0004] 心脏的组织上的特定位置处的局部激活时间(LAT)为电传播的波前经过该位置时的时间。局部激活时间通常是由特定参考时间测得的,诸如,体表心电图(ECG)记录的QRS波群中的时间点。
[0005] 美国专利申请公布2006/0084970描述了采集和标测心室中生理数据的方法。该方法包括将具有电极的导管插入心室中。用电极采集心室中的生理数据。确定电极的位置,并且使用电极的位置确定所采集的生理数据的位置。将所采集的生理数据与所采集的生理数据的位置整合。接收与心室的至少一部分的三维几何形状相关的信息,并且创建生理数据的连续三维颜色编码的标测图并将其叠加在三维几何形状信息的几何表示上。然后利用标测图来递送消融治疗。
[0006] 美国专利申请公布2016/0100770描述了一种用于诊断心律失常并引导导管治疗的系统,该系统可允许对身体内的空间电生理(EP)模式进行测量、分类、分析和标测。该系统还可引导心律失常治疗并在治疗进行时更新标测图。该系统可以使用具有高密度传感器的医疗装置,该传感器具有用于收集EP数据和定位数据的已知空间配置。此外,该系统还可使用电子控制系统(ECU)来计算并向用户提供多种度量、导数度量、高清晰度(HD)标测图、HD合成标测图和用于与显示装置上所示的几何解剖模型相关联的一般视觉辅助工具。

具体实施方式

[0024] 概述
[0025] 在一些实施方案中,构建了受检者心脏的一部分的电生理标测图。电生理标测图包括心脏的该部分的解剖结构的计算机化表示,以及叠加的电生理数据。此类标测图的示例是LAT标测图,其使用例如滑动比色刻度尺指示各种解剖位置处的相应LAT值。
[0026] 为了构建LAT标测图,导管的远侧端部处的一个或多个电极首先采集心脏组织上的各个位置的LAT值的“点云”。然后将该点云标测到组织的体素化解剖模型,使得所采集的LAT值被分别分配给模型中的体素的子集。随后,使用合适的内插技术,为剩余的体素分配内插LAT值。
[0027] 根据常规技术,分别针对心脏的相关部分的心内膜表面和心外膜表面构建两个完全独立的LAT标测图。然而,本发明人已认识到,由于电流通过内部或“壁内”心脏组织的传播,心脏的心内膜表面的电生理属性与心外膜表面的电生理属性相关。因此,由于考虑到隔离中的每个表面,上述常规技术可能提供不准确的内插LAT值。
[0028] 因此,本发明的实施方案提供体积(即,三维)LAT标测图,其考虑了心内膜表面和心外膜表面两者以及壁内组织。首先,构建心脏组织(包括心内膜表面、心外膜表面和壁内组织)的三维解剖模型。接下来,针对心内膜表面和心外膜表面采集相应的LAT点云,并且将LAT点云标测到模型。随后,使用合适的内插技术,估计剩余表面和壁内体素的LAT值。例如,可使用迭代内插技术,由此在每次迭代期间,为每个体素分配其直接邻域的值的平均值。
[0029] 有利的是,如本文所述构建的体积标测图对于心内膜表面和心外膜表面两者通常是准确的。此外,体积标测图可允许医师可视化壁内组织的电生理属性。此外,体积标测图可有利于更准确地识别电传播减速的区域。
[0030] 除了局部激活时间之外,本文所述的技术可用于构建与组织相关联的其他参数的体积标测图。此类参数包括电压、循环长度、温度和递送到组织的能量的量。
[0031] 系统描述
[0032] 首先参考图1,该图是根据本发明的一些实施方案的用于生成心脏组织的扩充模型的系统20的示意图。
[0033] 在图1中,示出了医师30沿受检者22的心脏24的腔室的组织移动导管26的远侧端部28。具体地讲,医师30沿组织的心内膜表面和心外膜表面两者移动远侧端部28。在一些实施方案中,远侧端部28包括可用于处理(例如,消融)组织的一个或多个区域的一个或多个处理电极。
[0034] 当导管的远侧端部沿组织移动时,属于系统20的处理器32跟踪远侧端部,即,探知远侧端部28设置在其处的组织上的多个位置。(为方便起见,这些位置中的每个位置在下文中简称为导管的位置。)如上所述,这些位置中的一些位置在组织的心内膜表面上,而这些位置中的其他位置在组织的心外膜表面上。
[0035] 此外,当导管的远侧端部沿组织移动时,设置在远侧端部28处的电极和/或其他传感器(例如,温度或力传感器)采集与至少一个参数相关的数据。由处理器32经由电接口34(诸如端口或插口)接收这些数据。基于这些数据,处理器32在多个位置处探知参数的相应值。
[0036] 通常,由远侧端部28采集的数据包括在远侧端部28穿过的组织的各个位置处的相应电压信号。另选地或除此之外,数据可包括位置处的相应温度值。另选地或除此之外,数据可包括导管压靠组织的力。
[0037] 在一些实施方案中,基于所探知的导管的位置,处理器32构建组织的解剖模型。然后利用前述参数的值来扩充该解剖模型,如下文参考图2至图3进一步所述。在其他实施方案中,处理器32利用参数值扩充预先存在的解剖模型。
[0038] 为了促进跟踪导管的远侧端部,导管的远侧端部可包括一个或多个电磁传感器,该一个或多个电磁传感器在存在所生成的磁场的情况下输出指示传感器的相应位置的信号。由处理器32经由电接口34接收这些信号。基于该信号,处理器32可探知导管的位置。
[0039] 另选地,导管的远侧端部可包括导管电极,并且多个电极贴片可耦接到受检者22的身体。当电压施加在导管电极与电极贴片之间时,可测量导管电极与电极贴片之间的电流的相应量值。基于这些电流量值,处理器可探知导管的位置。
[0040] 作为又一种替代形式,上述跟踪技术中的两者可彼此组合使用,如例如美国专利8,456,182中所述,该专利的公开内容以引用方式并入本文。另选地或除此之外,可使用任何其他合适的跟踪技术,例如,如美国专利8,456,182中所述。
[0041] 通常,系统20还包括监视器36。在医师操作导管26时,处理器32可在监视器36上将表示导管的远侧端部的图标叠加在受检者心脏的图像上,使得医师可视觉地跟踪导管。另选地或除此之外,处理器可在监视器36上显示组织的扩充模型,可如下文参考图2至图3详细描述的那样构建该扩充模型。
[0042] 一般来讲,处理器32可被实施为单个处理器或一组协作式联网或集群处理器。在一些实施方案中,如本文所述,处理器32的功能可例如使用一个或多个专用集成电路(ASIC)或现场可编程门阵列(FPGA)仅以硬件来实现。在其他实施方案中,处理器32的功能至少部分地以软件实现。例如,在一些实施方案中,处理器32为编程化数字计算设备,该编程化数字计算设备包括中央处理单元(CPU)和/或图形处理单元(GPU)、随机存取存储器
(RAM)、非易失性辅助存储装置(诸如硬盘驱动器或CD ROM驱动器)、网络接口和/或外围设备。如本领域所公知的,将包括软件程序的程序代码和/或数据加载到RAM中以用于由CPU和/或GPU执行和处理,并且生成结果以用于显示、输出、传输或存储。例如,程序代码和/或数据可以电子形式通过网络而被下载到计算机,或者替代地或除此之外,其可被提供和/或存储在非暂态有形介质(诸如磁性存储器、光学存储器、或电子存储器)上。此类程序代码和/或数据在被提供给处理器时,产生被配置为执行本文所述的任务的机器或专用计算机。
[0043] 扩充模型
[0044] 现在参考图2,其为根据本发明的一些实施方案的用于扩充心脏组织的模型的技术48的流程图的示意图。进一步参考图3,其示出了技术48的各方面。(应当注意,出于说明的目的,图3所示的量纯粹是假设的。)
[0045] 如上文参考图1所述,在探知步骤50处,处理器32探知心脏24的腔室的心内膜表面和心外膜表面上的多个位置处的特定参数的相应值。例如,处理器可探知组织属性的相应值,诸如组织的电压、LAT、循环长度或温度。(可从从组织采集的电压信号导出LAT和循环长度值。)另选地或除此之外,处理器可探知由处理电极递送到组织的能量(诸如射频(RF)能量)的量的相应值。可基于诸如递送到处理电极的能量的量、组织的温度和导管压靠组织的压力的因素来计算能量的量。
[0046] 随后,处理器将所探知的值与组织的三维模型38相关联。模型38包括多个体素,每个体素表示组织的不同相应部分。具体地讲,限定模型的第一表面40的那些体素(在本文中称为“心外膜体素”)表示组织的心外膜表面,限定第二表面42的那些体素(在本文中称为“心内膜体素”)表示心内膜表面,并且位于第一表面40和第二表面42之间的那些体素(在本文中称为“壁内体素”)表示壁内组织。表示表现出所探知的参数值的组织的相应部分的那些体素在本文中称为第一体素44。
[0047] 更具体地讲,在第一分配步骤52处,将在探知步骤50处探知的参数值分别分配给第一体素44,如图3的部分A所示。换句话讲,为每个第一体素44分配在由体素表示的组织部分处表现出的值。接下来,如图3的部分B-D所示,通过内插分配给第一体素44的值,处理器对在本文中被称为第二体素46的剩余体素赋值(即,为其分配相应值)。(为清楚起见,图3将分配给第二体素46的值用斜体表示。)
[0048] 通常,为了对第二体素赋值,处理器首先在初始化步骤54处初始化第二体素,即,处理器将相应初始值分配给每个第二体素相应46。为了执行该初始化,处理器可使用任何合适类型的最近邻内插。例如,如图3的部分B所示,处理器可使用标准最近邻内插技术,因为可以为每个第二体素分配最靠近它的第一体素的值。另选地,例如,加权最近邻内插技术可用于该初始化。
[0049] 通常,在初始化之后,处理器迭代地将第二体素的直接邻域的相应值的平均值分配给每个第二体素。(对于其中不执行上述初始化的实施方案,仅对已经分配了值的那些直接邻域执行取平均值。)该迭代平均可被称为“拉普拉斯内插”。
[0050] 在一些实施方案中,迭代次数是预定义的。在其他实施方案中,处理器执行迭代平均,直到满足一个或多个预定义的停止标准。例如,可执行迭代平均,直到任何相邻体素对之间的最大差值小于预定义的阈值。
[0051] 因此,例如,如图2所示,迭代平均可包括第二分配步骤56和检查步骤58。在第二分配步骤56处,处理器将其直接邻域的平均值分配给每个第二体素。在检查步骤58处,处理器检查是否已执行预定义迭代次数,或者是否已满足停止标准。如果是,则迭代平均结束。否则,处理器返回到第二分配步骤56。
[0052] 在一些实施方案中,如果两个体素共享至少一个顶点,则一个体素被认为是另一个体素的直接邻域(或与另一个体素“相邻”)。因此,体素可具有最多26个直接邻域。(由于体素的二维表示,图3示出了最多八个而不是26个直接邻域。)在其他实施方案中,仅当两个体素共享至少一个面时,这两个体素才被认为是彼此的直接邻域;因此,体素可具有最多仅六个直接邻域。另选地,可使用其他标准来确定体素的直接邻域。
[0053] 通过举例说明的方式,假设共享至少一个公共顶点的一对体素被认为是彼此的直接邻域,图3的部分C和D示出了上述平均值的两次迭代。(应当注意,图3不考虑图中未完全示出的任何体素;因此,例如,通过对仅三个直接邻域取平均值来对角体素赋值。)
[0054] 在一些实施方案中,在对每个第二体素赋值时,第二体素的直接邻域被相等地加权,如图3所假设的。在其他实施方案中,由相应权重加权平均值,该权重从与分配给第一体素44的值相关联的相应置信度水平导出。这些置信度水平通常是从导管的远侧端部接收相关数据的质量的函数。
[0055] 例如,假设心外膜表面(由第一表面40表示)的置信度水平大于心内膜表面的置信度水平,则处理器可向每个心外膜第一体素以及初始化为心外膜第一体素的值的每个“子”第二体素赋予更大的权重。因此,例如,假设每个心外膜第一体素及其子体素的权重为1.2,并且每个心内膜第一体素及其子体素的权重仅为1,则部分C中所示的特定第二体素46a将被分配103.3(=(1.2*500+330)/(1.2*5+3))的值,而不是103.8。
[0056] 作为拉普拉斯内插的替代或补充,可以使用其他内插技术来对第二体素46赋值。此类技术包括例如捏合、距离倒数加权、样条内插、自然相邻内插、以及如上文已经描述的最近邻内插。一般来讲,响应于内插参数的属性来选择内插技术。例如,对于在整个组织上线性变化的局部激活时间,可使用线性内插技术,诸如拉普拉斯内插。另一方面,对于递送的能量,可使用非线性的基于热力学的内插技术。例如,处理器可假设递送的能量的量从处理电极接触组织的部位以指数方式衰减。
[0057] 在一些实施方案中,使用多个并行执行线程(例如,在图形处理单元(GPU)上运行)对第二体素46赋值。因此,例如,在拉普拉斯内插的每次迭代期间,可以并行处理所有第二体素。
[0058] 在一些情况下,不将对应于疤痕组织的体素进行赋值,并且对其他体素的赋值没有贡献。疤痕组织可以由医师手动识别或由处理器32基于从组织采集的电压信号自动识别。
[0059] 通常,在对第二体素赋值之后,处理器在显示步骤60处在监视器36(图1)上显示模型38,以便指示参数值。例如,处理器可以根据对应于由参数获得的值的范围的比色刻度尺对模型的体素进行着色。如上文概述中所述,在显示模型时,处理器通常指示分配给壁内体素的值。因此,有利的是,相对于是否仅示出心内膜表面和心外膜表面,医师可获得对组织的电属性的更好理解。
[0060] 在一些实施方案中,基于分配给模型38的LAT值,处理器识别使电传播减速的任何区域。有利的是,模型38的三维性质有利于以更高的准确度识别这些区域。
[0061] 例如,在具有坐标(x0,y0,z0)的每个体素处,处理器可将电传播的归一化速度计算为V(x0,y0,z0)=((L(x0+1,y0,z0)-L(x0-1,y0,z0))-1,(L(x0,y0+1,z0)-L(x0,y0-1,z0))-1,(L(x0,y0,z0+1)-L(x0,y0,z0-1))-1),其中L(x,y,z)指示具有坐标(x,y,z)的体素处的LAT,(x0±1,y0,z0)是体素沿x轴的直接邻域,(x0,y0±1,z0)是体素沿y轴的直接邻域,并且(x0,y0,z0±1)是体素沿z轴的直接邻域。处理器然后可将速度的导数计算为dV=(V(x0+1,y0,z0)-V(x0-1,y0,z0)),V(x0,y0+1,z0)-V(x0,y0-1,z0),V(x0,y0,z0+1)-V(x0,y0,z0-1))。随后,处理器可计算点积V·dV。如果该点积为负,则假设体素表示使电传播减速的区域的一部分。
[0062] 响应于识别使电传播减速的至少一个区域,处理器可生成指示该区域的输出。例如,在显示模型时,处理器可以着色或以其他方式注释表示区域的体素。
[0063] 本领域技术人员应当理解,本发明不限于上文具体示出和描述的内容。相反,本发明的实施方案的范围包括上文所述的各种特征的组合与子组合两者,以及本领域的技术人员在阅读上述说明书时可能想到的未在现有技术范围内的变型和修改。以引用方式并入本专利申请的文献被视为本申请的整体部分,不同的是如果这些并入的文献中限定的任何术语与本说明书中明确或隐含地给出的定义相冲突,则应仅考虑本说明书中的定义。

当前第1页 第1页 第2页 第3页
相关技术
标测相关技术
测图相关技术
L.扎尔发明人的其他相关专利技术