首页 / 一种用于智慧教育的课堂分析系统

一种用于智慧教育的课堂分析系统无效专利 发明

技术领域

[0001] 本发明涉及智慧教育领域,尤其涉及一种用于智慧教育的课堂分析系统。

相关背景技术

[0002] 智慧教育即教育信息化,是指在教育管理、教育教学和教育科研中全面深入地运用现代信息技术来促进教育改革与发展的过程。其技术特点是数字化、网络化、智能化和多媒体化,基本特征是开放、共享、交互、协作。以教育信息化促进教育现代化,用信息技术改变传统模式。
[0003] 学生的课堂表现的价值体现在教学测评、师资培养、学生个性化辅导等多个方面。一方面可记录教师真实的教学情况,并据此作为评教和自评的客观依据,以提升教师的教学能力;另一方面能记录学生千差万别的个性、能力和学习习惯,尽可能实现个性化的辅导,并对其成长状况进行长期监测。
[0004] 现阶段观察记录和分析学生的课堂学习表现主要是靠授课老师课堂现场人为监督,以及授课老师在课后通过视频资料对学生学习表现进行评估,并由授课老师根据学生的学习表进行分析和统计以得到学生的课堂表现。
[0005] 然而,这两种评估方式主要存在工作耗时长、自动化程度低、授课老师分散精力,降低授课效率和无法全面准确地记录所有学生的学习行为等问题。

具体实施方式

[0037] 为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
[0038] 这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
[0039] 在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
[0040] 应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
[0041] 参见图1,在一个实施例中,本发明的用于智慧教育的课堂分析系统包括:若干个教师终端和课堂分析平台,其中课堂分析平台分别与若干个教师终端具有通信连接,教师终端为教师或管理员使用的具有通信功能和数据传输功能的智能设备,其包括:智能手机、平板电脑、笔记本电脑和台式电脑。
[0042] 教师终端用于根据需要发送课堂分析请求到课堂分析平台并根据接收到的每个学生的课堂表现报告进行教学评估和教学管理。
[0043] 课堂分析平台包括:课程视频获取模块、课堂视频分割模块、课堂分析图像模块、学生识别模块、图像预处理模块、部位划分模块、行为构建模块和数据库,其中各模块间具有通信连接。
[0044] 课程视频根据课堂分析请求从数据库获取目标课堂视频。
[0045] 课堂视频分割模块在时间维度上按照预设时间步长对目标课堂视频进行图像帧切割处理以得到课堂图像集。
[0046] 课堂分析图像模块提取课堂图像集中每个课堂图像的多维空间特征和多维时间特征,并将每个课堂图像的多维空间特征和多维时间特征在时间维度和空间维度进行加权特征融合以得课堂分析图像,然后对所有课堂分析图像进行处理以得到课堂分析图像集。
[0047] 学生识别模块识别课堂分析图像集的每个课堂分析图像的每个学生,并提取每个课堂分析图像的每个学生的图像以得到每个学生的学生分析图像集。
[0048] 图像预处理模块对学生分析图像集中的每个学生分析图像进行前景图像分割,并识别每个学生分析图像中的学生并获取每个学生的中心点,然后根据每个学生的中心点对每个学生进行定位以得到学生分析标准图像集。
[0049] 部位划分模块将学生分析标准图像集中的每张学生分析标准图像划分为若干个部位子区域,并识别每个部位子区域的区域关键特征点,然后获取每个区域关键特征点在学生坐标系下的坐标位置。
[0050] 行为构建模块对每张学生分析标准图像的每个部位子区域的各区域关键特征点进行归一化处理以得到每个部位子区域的归一化特征节点。
[0051] 行为构建模块通过学生分析标准图像集中的每张学生分析标准图像的每个部位子区域的归一化特征节点的轨迹信息构建学生行为,并根据所述学生行为生成学生的课堂表现报告。
[0052] 数据库用于存储课堂监控视频和其他用于进行课堂分析的数据。
[0053] 在一个实施例中,本发明执行的课堂分析方法具体包括:
[0054] S1、教师终端发送课堂分析请求到课堂分析平台,所述课堂分析请求包括授课时间、授课地点、授课教师和课程名称。
[0055] 具体地,教师终端为教师使用的具有通信功能和数据传输功能的智能设备,其包括:智能手机、平板电脑、笔记本电脑和台式电脑。
[0056] 可选地,课堂分析请求用于指示课堂分析平台对参与目标课程的学生的课堂注意力,课堂行为和学习态度进行分析。
[0057] 可选地,课堂分析请求包括目标课程的课程标识符、授课时间、授课地点、授课教师和课程名称,目标课程为教师终端指示课堂分析平台正在进行课堂分析的课程,课程标识符用于对课程进行唯一标识,即两不同课程之间的课程标识符不同,不同时间段上课的两相同课程之间的课程标识符不同。
[0058] S2、课堂分析平台的课程视频获取模块根据课堂分析请求的授课时间、授课地点、授课教师和课程名称从数据库获取目标课堂视频。
[0059] 具体地,目标课堂视频为目标课程授课过程中的监控视频。
[0060] S3、课堂视频分割模块在时间维度上按照预设时间步长对目标课堂视频进行图像帧切割处理以得到课堂图像集。
[0061] 可选地,所述课堂图像集包含多个按时间顺序排列的课堂图像,所述预设时间步长为系统预设的获取到的两个课堂图像之间的时间间隔。
[0062] 课堂图像集为课堂视频分割模块按照预设的时间间隔对目标课堂视频进行图像帧切割以得到若干课堂图像,并将若干课堂图像按照时间先后顺序进行排序以得到课堂图像集。
[0063] 可选地,预设时间步长根据实际需求和计算资源进行预先设置。
[0064] S4、课堂分析图像模块提取课堂图像集中每个课堂图像的多维空间特征和多维时间特征,并将每个课堂图像的多维空间特征和多维时间特征在时间维度和空间维度进行加权特征融合以得课堂分析图像,然后对所有课堂分析图像进行处理以得到课堂分析图像集。
[0065] 具体地,课堂分析图像模块提取课堂图像集中每个课堂图像的多维空间特征和多维时间特征包括:
[0066] 课堂分析图像模块获取课堂图像的空间特征和时间特征;
[0067] 课堂分析图像模块根据课堂图像的相邻像素的关联特性利用白化进行去相关操作以去除空间特征和时间特征的冗余信息;
[0068] 课堂分析图像模块获取课堂图像中的特征点和每个特征点的编码系数,并对每个特征点的编码系数求和,然后将得到的和值作为课堂图像的全局表示;
[0069] 课堂分析图像模块获取空间特征和时间特征的空间编码向量和时间编码向量,并将空间编码向量和时间编码向量进行归一化操作以得到课堂图像的多维空间特征和多维时间特征。
[0070] 课堂分析图像模块将课堂图像的多维空间特征和多维时间特征在时间维度和空间维度进行加权特征融合得到相应课堂图像的多维时空特征,并根据多维时空特征进行图像重构以得相应的课堂分析图像;
[0071] 可选地,课堂分析图像模块将课堂图像的多维空间特征和多维时间特征在时间维度和空间维度进行加权特征融合得到相应课堂图像的多维时空特征包括:
[0072] Qt=Y1+Y2
[0073] 可选地,
[0074] 可选地,
[0075] 其中,λ和tanh为激活函数,G1和G2为卷积核,Qt为当前时刻的多维时空特征,Qt-1为前一时刻的多维时空特征,rt-1为前一时刻的多维时间特征,zt为当前时刻的多维空间特征。
[0076] 课堂分析图像模块将所有的课堂分析图像进行处理得到课堂分析图像集。
[0077] S5、学生识别模块识别课堂分析图像集的每个课堂分析图像的每个学生,并提取每个课堂分析图像的每个学生的图像以得到每个学生的学生分析图像集。
[0078] 可选地,每个学生均有一个对应的学生分析图像集;学生分析图像集用于对对应的学生的课堂表现进行分析。学生分析图像集,包括若干张学生分析图像。
[0079] 具体地,学生识别模块识别课堂分析图像集中第一个课堂分析图像中的第一个学生,并提取课堂分析图像集中第一个课堂分析图像中的目标学生的学生图像,学生识别模块依次识别课堂分析图像集中接下来每个课堂分析图像中的目标学生,并依次提取课堂分析图像集中每个课堂分析图像中的目标学生的学生图像,并将所有的学生图像进行处理得到目标学生的学生分析图像集。
[0080] S6、图像预处理模块对学生分析图像集中的每个学生分析图像进行前景图像分割,并识别每个学生分析图像中的学生并获取每个学生的中心点,然后根据每个学生的中心点对每个学生进行定位以得到学生分析标准图像集。
[0081] 具体地,学生分析标准图像集包括,若干张学生分析标准图像。
[0082] 可选地,图像预处理模块识别每个学生分析图像中的学生并获取学生的中心点,并根据学生在对应的学生分析图像中的位置获取学生中心点在每个学生分析图像中的位置。
[0083] S7、部位划分模块将学生分析标准图像集中的每张学生分析标准图像划分为若干个部位子区域,并识别每个部位子区域的区域关键特征点,然后获取每个区域关键特征点在学生坐标系下的坐标位置。
[0084] 可选地,学生坐标系为以对应学生的中心点为坐标系原点的坐标系。
[0085] 可选地,区域关键特征点为对学生行为分析具有关键性作用的特征点。
[0086] 部位子区域包括头部子区域、颈部子区域、肩部子区域、肘部子区域、手部子区域、臀部子区域、膝部子区域和脚部子区域。
[0087] 具体地,部位划分模块将每张学生分析标准图像划分为若干个部位子区域包括:
[0088] 部位划分模块获取每张学生分析标准图像的图像共生矩阵,并根据所述图像共生矩阵获取每个部位子区域的区域大小和边界长度;所述图像共生矩阵为对图像上保持特定距离的两象素分别具有某灰度的状况进行统计得到;
[0089] 部位划分模块根据每个部位子区域的区域大小和边界长度进行第一部位划分以得到第一部位划分结果;
[0090] 部位划分模块根据第一部位划分结果获取每个部位子区域的边缘点的初始位置;
[0091] 部位划分模块根据各部位子区域的区域平滑曲线、区域紧凑性和区域大小构建每个部位子区域的约束划分条件;
[0092] 部位划分模块根据第一部位划分结果和每个部位子区域的约束划分条件进行第二部位划分以得到若干个部位子区域。
[0093] S8、行为构建模块对每张学生分析标准图像的每个部位子区域的各区域关键特征点进行归一化处理以得到每个部位子区域的归一化特征节点。
[0094] S9、行为构建模块通过学生分析标准图像集中的每张学生分析标准图像的每个部位子区域的归一化特征节点的轨迹信息构建学生行为,并根据所述学生行为生成学生的课堂表现报告,并将其发送到教师终端。
[0095] 学生课堂表现报告包括学生的课堂活跃度、课堂行为占比、课堂行为趋势和学生专注度。
[0096] 可选地,课堂行为包括举手、站立、侧身、趴桌和端正。
[0097] 可选地,课堂活跃度为学生在课堂上的活跃程度、
[0098] 可选地,课堂行为占比为学生在课堂中每个行为的时间占比,例如在整节课中,学生趴在桌上的时间占整堂课时间的比例,学生端正坐着的时间占整堂课时间的比例。
[0099] S10、教师终端根据接收到的每个学生的课堂表现报告进行教学评估和教学管理。
[0100] 本发明可以通过对目标课堂视频进行图像帧切割处理和加权特征融合以得到课堂分析图像集,并根据课堂分析图像集对学生的部位子区域的进行分析以识别学生在课堂中举手、站立、侧身、趴桌、端正等多种课堂行为并生成学生的课堂分析报告。
[0101] 此外,根据学生的课堂分析报告对课堂中学生的课堂活跃度、课堂行为占比、课堂行为趋势和专注度进行分析以帮助老师了解课堂的关键活跃环节和学生的活跃区域分布等信息,并通过统计课堂行为占比和分析课堂行为趋势帮助学校进行更细致的教学评估和更合理的教学管理工作。
[0102] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

当前第1页 第1页 第2页 第3页
相关技术
教育课堂相关技术
智慧教育相关技术
周欢发明人的其他相关专利技术