首页 / 评估受试者卵巢储备功能的系统

评估受试者卵巢储备功能的系统有效专利 发明

技术领域

[0001] 本发明涉及一种用于优化的评估受试者卵巢储备功能的系统,利用该系统可以评估受试者其自身的卵巢储备功能的情况,以评估其生育潜能,以及评估受试者在经过了相应的治疗之后生育潜能是否改善。

相关背景技术

[0002] 卵巢皮质内含有的原始卵泡数,称为卵巢储备。它反映卵巢提供健康可成功受孕卵子的能力,是女性卵巢功能的最重要的评价指标。一般来说,原始卵泡数量越多质量也越好,受孕几率也越高。
[0003] 卵巢储备功能评估可以帮助育龄妇女了解自己的生育力现状,以便合理安排自己的生育计划。对于有不孕病史的妇女来说它可以用来预测育龄妇女的卵巢反应性,为不孕的临床诊断和治疗计划的制定提供参考。目前国际国内诊断卵巢储备功能下降的主要依据即博洛尼亚标准关于卵巢低反应的预测。因此评价卵巢储备功能的指标实际上也就是预测卵巢反应性的指标。
[0004] 年龄因素是评价卵巢储备的重要因素,一项关于年龄与IVF成功率的研究结果显示:30岁以下妇女IVF成功率约26%,而当年龄在37岁及以上时IVF成功率仅为9%。
[0005] 卵巢超声检查包括检测窦卵泡数、卵巢体积和卵巢基质血流三方面。窦卵泡数是指早卵泡期通过经阴道超声学探查的方法计数双侧卵巢窦卵泡的总数,是卵巢储备能力的直接体现。窦卵泡直径在2-10mm或3-8mm,窦卵泡数减少提示对卵巢刺激的反应性差,妊娠率下降,研究表明,用窦卵泡数预测IVF成功率比基础FSH检测更有效。卵巢基质血流与卵巢体积现在不是预测卵巢反应性以及评估卵巢储备功能的常用方法。
[0006] 在生殖医学领域,评估卵巢储备的目的是用来预测卵巢反应性。目前,AMH水平检测和窦卵泡计数(AFC)是国际公认的最好的两个预测卵巢反应性的指标。基础FSH水平检测是目前国际上应用最广泛的卵巢储备功能评估指标。年龄因素也是评价卵巢储备的重要因素。
[0007] 窦卵泡计数(AFC)是早期Gn依赖性卵泡生长中直径小于8mm的卵泡数。众所周知,卵巢中的原始卵泡池与正在生长的窦状卵泡的数量有关,因此,从理论上讲,AFC能够尽可能反映出剩余卵巢卵泡池的精确度。然而,要获得良好的AFC结果,需要熟练的经阴道超声(TVS)专家进行超声波检查,这既耗时又耗资源。AFC测量中缺乏标准,AFC会随着月经周期、避孕药的使用、以及TVS设备的灵敏度和分辨率等因素而发生变化,所有这些现有的混杂因素会使得对AFC的可靠评估更加困难。

具体实施方式

[0114] 下面将更详细地描述本发明的具体实施例。然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
[0115] 需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
[0116] 在本申请涉及卵巢储备是指:卵巢皮质内含有的原始卵泡数,称为卵巢储备。它反映卵巢提供健康可成功受孕卵子的能力,是女性卵巢功能的最重要的评价指标。一般来说,原始卵泡数量越多质量也越好,受孕几率也越高。
[0117] 但是原始卵泡数没办法进行无创的评估,只能通过每个月经周期动员的卵泡数进行评估,IVF-ET周期动员的卵泡过少(卵巢低反应),提示卵巢储备功能下降。
[0118] 通常认为年龄因素是评价卵巢储备的最重要因素,一项关于年龄与IVF成功率的研究结果显示:30岁以下妇女IVF成功率约26%,而当年龄在37岁及以上时IVF成功率仅为9%。
[0119] 卵巢储备能力随年龄增长而下降的机制如下。(一)卵泡数量减少,原始卵泡出现于胚胎性别分化以后,此时卵泡数最多,青春期后卵泡开始发育成熟,随着排卵的完成大量被募集而未排出的卵泡萎缩消失形成黄体。卵泡数随着年龄增加而不断减少:人类中20周龄胚胎最多,约为600万个卵泡,新生儿期减少至70-200万,青春期约4万,绝经期开始时仅余千余,直至完全耗竭。(二)卵子质量下降,胚胎质量主要由卵子质量决定,大龄可致卵细胞非整倍体几率增加、线粒体功能异常风险增加、卵子极性消失和卵细胞表观遗传学改变。(三)内分泌因素,下丘脑-垂体-卵巢轴调节妇女月经周期和排卵,该轴内分泌水平异常会导致不孕。AMH和inhibin B由小卵泡分泌,是卵巢储备能力的直接体现。随着年龄的增长卵巢储备降低,可募集的卵泡数减少,因此其分泌的AMH和inhibin B浓度也随之下降。
Inhibin B可负反馈调节垂体FSH分泌,inhibin B水平下降导致黄体期FSH分泌增加。提前增加的FSH促进新卵泡的生长和E2分泌,最终缩短了月经周期。血清FSH水平增加,inhibin B水平下降,卵泡对FSH敏感度下降,提示可被募集的窦状卵泡数减少。月经周期是卵巢储备和生育力的体现,大龄致月经周期缩短,月经周期减少2-3天是生殖系统衰老的敏感指征,提示卵泡生长提前启动(FSH水平升高),原始卵泡储备下降。
[0120] 连续变量:在统计学中,变量按变量值是否连续可分为连续变量与分类变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如,生产零件的规格尺寸,人体测量的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。反之,其数值只能用自然数或整数单位计算的则为离散变量。例如,企业个数,职工人数,设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得。
[0121] 分类变量是指地理位置、人口统计等方面的变量,其作用是将调查响应者分群。描述变量是描述某一个客户群与其他客户群的区别。大部分分类变量也就是描述变量。分类变量可以分为无序分类变量和有序分类变量两大类。其中,无序分类变量(unordered categorical variable)是指所分类别或属性之间无程度和顺序的差别。其又可分为①二项分类,如性别(男、女),药物反应(阴性和阳性)等;②多项分类,如血型(O、A、B、AB),职业(工、农、商、学、兵)等。而有序分类变量(ordinal categorical variable)各类别之间有程度的差别。如尿糖化验结果按-、±、+、++、+++分类;疗效按治愈、显效、好转、无效分类。对于有序分类变量,应先按等级顺序分组,清点各组的观察单位个数,编制有序变量(各等级)的频数表,所得资料称为等级资料。
[0122] 变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析;若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析。有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。
[0123] 本发明涉及一种用于评估受试者卵巢储备功能的系统,其包括:
[0124] 数据采集模块,其用于获取受试者的年龄、抗缪勒氏管激素(AMH)水平、卵泡刺激素(FSH)水平的数据;以及计算卵巢储备功能的模块,其用于将数据采集模块中的获取的上述信息进行计算,从而计算出受试者的卵巢低反应的概率(p)。
[0125] 本发明还涉及一种用于评估受试者卵巢储备功能的系统,其包括:
[0126] 数据采集模块,其用于获取受试者的年龄、抗缪勒氏管激素(AMH)水平、卵泡刺激素(FSH)水平的数据;以及
[0127] 计算卵巢储备功能的模块,其用于将数据采集模块中的获取的上述信息进行计算,从而计算出受试者的卵巢低反应的概率(p);以及分组模块,在所述分组模块中预存有默认的卵巢储备功能分组参数,并且依据该分组参数,对所述计算得到的卵巢低反应概率p进行分组,从而对受试者的卵巢储备水平进行分组。
[0128] 在计算卵巢储备功能的模块中,利用将受试者年龄、受试者抗缪勒氏管激素(AMH)水平、受试者卵泡刺激素(FSH)水平的数据转换成的多分类变量来计算受试者的卵巢低反应概率(p)。
[0129] 抗缪勒氏管激素(AMH)是一种由卵巢小卵泡的颗粒层细胞所分泌的荷尔蒙,胎儿时期的女宝宝从9个月大便开始制造AMH,卵巢内的小卵泡数量越多,AMH的浓度便越高;反之,当卵泡随着年龄及各种因素逐渐消耗,AMH浓度也会随之降低,越接近更年期,AMH便渐趋于0。
[0130] 卵泡刺激素(FSH)是垂体前叶嗜碱性细胞分泌的一种激素,成分为糖蛋白,主要作用为促进卵泡成熟。FSH可促进卵泡颗粒层细胞增生分化,并促进整个卵巢长大。而其作用于睾丸曲细精管则可促进精子形成。FSH在人体内呈脉冲式分泌,女性随月经周期而改变。测定血清中FSH对了解垂体内分泌功能,间接了解卵巢的功能状态、评估卵巢储备及卵巢反应性、制定促排卵用药剂量等不孕和内分泌疾病的诊断治疗都有重要的意义。
[0131] 在本发明中抗缪勒氏管激素(AMH)水平是受试者月经周期任一天的静脉血血清样本中的抗缪勒氏管激素浓度,卵泡刺激素(FSH)水平是指女性受试者月经2-4天的静脉血血清样本中的卵泡刺激素浓度。
[0132] 在计算卵巢储备功能的模块中,本申请的发明人经过深入研究,将受试者的年龄转变成三分类变量,即将年龄分为三组,分别为:受试者的年龄在30岁以下,受试者的年龄在大于30岁且在40岁以下,以及受试者的年龄大于40岁。
[0133] 在计算卵巢储备功能的模块中,本申请的发明人经过深入研究,将受试者的抗缪勒氏管激素(AMH)水平转变成五分类变量,即将抗缪勒氏管激素(AMH)水平分为五组,分别为:受试者的抗缪勒氏管激素(AMH)水平小于0.5ng/ml,受试者的抗缪勒氏管激素(AMH)水平在0.5ng/ml以上且小于1ng/ml,受试者的抗缪勒氏管激素(AMH)水平在1ng/ml以上且小于1.5ng/ml,受试者的抗缪勒氏管激素(AMH)水平在1.5ng/ml以上且小于2ng/ml,以及受试者的抗缪勒氏管激素(AMH)水平大于2ng/ml;
[0134] 在计算卵巢储备功能的模块中,本申请的发明人经过深入研究,将受试者的泡刺激素(FSH)水平转变成四分类变量,即将泡刺激素(FSH)水平分为四组,分别为:受试者的泡刺激素(FSH)水平小于6.5IU/L,受试者的泡刺激素(FSH)水平在6.5IU/L以上且小于8.5IU/L,受试者的泡刺激素(FSH)水平在8.5IU/L以上且小于10.5IU/L,以及受试者的泡刺激素(FSH)水平在10.5IU/L以上。
[0135] 在计算卵巢储备功能的模块中,本申请的申请人经过精心研究,如上所述将受试者的年龄分成三分类变量,将抗缪勒氏管激素(AMH)水平分成五分类变量,将卵泡刺激素(FSH)水平分成四分类变量,从而实现将连续变量变成不同的多分类变量,带入分类变量模型,计算得到卵巢低反应概率,并根据本申请的发明人的总结的分组原则对卵巢储备功能进行分组,得到受试者的卵巢储备功能情况。
[0136] 通过将上述3个变量变换成不同的多分类变量,利用这样的多分类变量来进行数据分析可以更为准确地预测受试者的卵巢储备功能,且模型稳定性更好。在本申请中,利用年龄、抗缪勒氏管激素(AMH)水平、卵泡刺激素(FSH)水平这三个指标构建了预测了卵巢储备的系统,能够代替原来利用年龄、抗缪勒氏管激素(AMH)水平、卵泡刺激素(FSH)水平、窦卵泡计数(AFC)这四个指标构建的预测卵巢储备的系统。虽然原来的四个指标的系统的预测效果非常好,但如果可以避免采用窦卵泡计数(AFC)数据,会进一步提高系统的可操作性性并降低整个系统运行的成本。此外,原来的四变量模型中相关性较强,指标之间的功能存在重叠。因此本申请的发明人在本申请中做了精心地设计,删除了获取较为困难的窦卵泡计数(AFC)指标,而对其他指标的进行了更为细致地分类而代替之前的二分类变量。经过大量的尝试和对于系统的不断完善,依据上述本申请中描述的分类依据,不在采用全部转换为二分类变量的方式,而是将年龄转变为三分类变量,同时对于分类的标准进行了优化,将抗缪勒氏管激素(AMH)水平转变为五分类变量,同时对于分类的标准进行了优化,将卵泡刺激素(FSH)水平转变为四分类变量,同时对于分类的标准进行了优化,从而实现了用三指标代替原来的四指标系统,并且也实现了同样良好的预测效果。
[0137] 利用本申请的系统通过准确地评估受试者的卵巢储备功能,能够帮助临床医生制定更为有效的方案,以及更为准确地评估受试者在接收了一段时间的治疗之后,该治疗方案是否能够有效地改善了受试者的卵巢储备功能。
[0138] 在计算卵巢储备功能的模块中,预先存储有基于现有数据库中受试者的受试者年龄、受试者抗缪勒氏管激素(AMH)水平、以及受试者卵泡刺激素(FSH)水平的数据转换成的多分类变量拟合而成的用于预测受试者的卵巢低反应概率(p)的公式。并根据分组标准对受试者卵巢储备功能情况进行分组。
[0139] 在本发明中,现有数据库是指能够获取的正在接受治疗或以前接受治疗满足下述纳入和排除标准的受试者组成的数据库,对于数据库的样本量没有任何约定,当然数据库的样本量越大越好,例如可以是利用100个受试者,200个受试者,300个受试者,优选为400个受试者以上,更优选为500个受试者以上。在一个具体的实施例中,采用的1523个样本组成的现有数据库。在一个具体的实施例中,采用的3273个样本组成的现有数据库。
[0140] 上述纳入和排除标准分别为,纳入标准为:年龄在20~45岁之间的女性,体重指数(BMI)≤30,连续六个月经周期为25至45天,通过阴道超声检查评估双侧卵巢形态正常,既往IVF/ICSI-ET周期数≤2。排除标准为:输卵管积水,单侧卵巢AFC>20,多囊卵巢综合征,其他未经治疗的代谢或内分泌疾病,针对卵巢或宫腔的既往手术,宫内异常,妊娠3个月以内,吸烟,在之前的两个月内使用口服避孕药或其它激素,之前经历过放疗或化疗,接受PGD(植入前胚胎遗传学诊断)/PGS(胚胎植入前遗传学筛查)治疗的基因诊断的夫妇。
[0141] 在选择数据库的样本时,能够纳入数据库使用的受试者需要同时满足上述纳入和排除标准。
[0142] 计算卵巢储备功能的模块利用如下公式来根据数据采集模块中获取的数据来计算用于表征所述受试者的卵巢储备功能的参数(p):
[0143] p=1/(1+e^(-(a+b*age+c*FSH+d*AMH)))(公式一)
[0144] 其中,p为计算出的用于表征所述受试者的卵巢储备功能的参数,
[0145] 其中,a、b、c和d为无单位参数;
[0146] 其中,在计算卵巢储备功能的模块中,基于受试者的年龄、受试者的抗缪勒氏管激素(AMH)水平和受试者的泡刺激素(FSH)水平来获取b、c和d的取值来带入公式一进行计算,在计算中age,FSH,以及AMH取值为0或1。
[0147] 进一步来说,a为选自-4.072~-3.188中的任意数值,a优选为-3.630;当受试者的年龄在30岁及以下时,age为0,当受试者的年龄在大于30岁且在40岁及以下,age为1,b为选自0.163~0.960中的任意数值,b优选为0.561,以及当受试者的年龄大于40岁时,age为1,b为选自0.295~1.317中的任意数值,b优选为0.806;当受试者的泡刺激素(FSH)水平小于6.5IU/L时,FSH为0,当受试者的泡刺激素(FSH)水平在6.5IU/L及以上且小于8.5IU/L时,FSH为1,c为选自0.239~1.006中的任意数值,c优选为0.622,当受试者的泡刺激素(FSH)水平在8.5IU/L及以上且小于10.5IU/L时,FSH为1,c为选自0.363~1.303中的任意数值,c优选为0.833,以及当受试者的泡刺激素(FSH)水平在10.5IU/L及以上时,FSH为1,c为选自
0.847~1.712中的任意数值,c优选为1.279。当受试者的抗缪勒氏管激素(AMH)水平在2ng/ml及以上时,AMH为0;当受试者的抗缪勒氏管激素(AMH)水平小于0.5ng/ml时,AMH为1,d为选自2.708~3.701中的任意数值,d优选为3.204,当受试者的抗缪勒氏管激素(AMH)水平在
0.5ng/ml及以上且小于1ng/ml时,AMH为1,d为选自1.985~2.887中的任意数值,d优选为
2.436,当受试者的抗缪勒氏管激素(AMH)水平在1ng/ml及以上且小于1.5ng/ml时,AMH为1,d为选自1.153~2.070中的任意数值,d优选为1.612,当受试者的抗缪勒氏管激素(AMH)水平在1.5ng/ml及以上且小于2ng/ml时,AMH为1,d为选自0.230~1.356中的任意数值,d优选为0.793。
[0148] 在本申请的分组模块中预存有对卵巢储备功能进行评价和分组依据。当计算出的用于表征所述受试者的卵巢低反应概率的参数(p)<10%时,分组模块确定该受试者属于卵巢储备功能良好;当10%≤计算出的用于表征所述受试者的卵巢低反应概率的参数(p)<25%,分组模块确定该受试者属于卵巢储备功能较好;当20%≤计算出的用于表征所述受试者的卵巢低反应概率的参数(p)<50%,分组模块确定该受试者属于卵巢储备功能较差;
当计算出的用于表征所述受试者的卵巢低反应概率的参数(p)≥50%,分组模块确定该受试者属于卵巢储备功能差。
[0149] 在本申请的另外的一个具体的实施方式中,本申请还涉及用于评估受试者卵巢储备功能的方法,该方法包括数据采集步骤,其获取受试者的年龄、抗缪勒氏管激素(AMH)水平、卵泡刺激素(FSH)水平的数据;以及计算卵巢储备功能的步骤,其利用数据采集步骤中的获取的上述信息进行计算,从而计算出受试者的卵巢低反应的概率(p)。此外,该方法还包括:分组步骤,在所述分组步骤中利用预先已知的卵巢储备功能分组参数,并且依据该分组参数,对所述计算得到的卵巢低反应概率p进行分组,从而对受试者的卵巢储备水平进行分组。
[0150] 如上所述,本申请的方法中所进行的步骤中的具体内容,对于受试者年龄、受试者抗缪勒氏管激素(AMH)水平、受试者卵泡刺激素(FSH)水平的数据的获取,分组以及处理方式均可以参照上述本申请涉及的系统的各模块进行的步骤。
[0151] 实施例
[0152] 在实施例中,首先进行样本量估算,总样本量应>553人,所有夫妇均努力尝试怀孕至少12个月。
[0153] 按照下述纳入和排除标准来三个生殖医学中心共纳入561对夫妇进行该研究,即选择了561对满足下述纳入和排除标准的夫妇用于后续的研究。
[0154] 纳入标准为:年龄在20~45岁之间的女性,体重指数(BMI)≤30,连续六个月经周期为25至45天,通过阴道超声检查评估双侧卵巢形态正常,既往IVF/ICSI-ET周期数≤2。
[0155] 排除标准为:输卵管积水,单侧卵巢AFC>20,多囊卵巢综合征,其他未经治疗的代谢或内分泌疾病,针对卵巢或宫腔的既往手术,宫内异常,妊娠3个月以内,吸烟,在之前的两个月内使用口服避孕药或其它激素,之前经历过放疗或化疗,接受PGD(植入前胚胎遗传学诊断)/PGS(胚胎植入前遗传学筛查)治疗的基因诊断的夫妇。
[0156] 控制性卵巢刺激(COS)治疗
[0157] 在月经周期的第2天或第3天开始给予Gn(即人重组FSH)治疗。起始剂量根据年龄、BMI(即身体质量指数,是用体重公斤数除以身高米数平方得出的数字,是目前国际上常用的衡量人体胖瘦程度以及是否健康的一个标准)、月经2-4天FSH和AFC水平来选择。在促排卵期间,Gn起始剂量根据超声观察和血清E2水平来调整。GnRH拮抗剂治疗开始于刺激第5-7天,生长的卵泡直径为10-12mm时。当通过超声可见至少2个优势卵泡(直径≥18mm)时,给予5000-10000IU的hCG以引发最终的卵母细胞成熟。hCG给药36小时后进行取卵。移植1-3个胚胎或进行胚胎冷冻保存。然后提供了黄体期黄体酮支持物。
[0158] 在本申请的实施例中,利用本申请的申请人在2017年和2018年之间接收了上述GnRH拮抗剂治疗的受试者,其中最终2017年有1523名受试者的数据符合上述标准被纳入到本实施例中,在2018年有3273名受试者的数据符合上述标准被纳入到本实施例中。用于构建本申请涉及的系统。
[0159] 获取样品和内分泌测定
[0160] 针对如上所述的4796名受试者,抽取静脉血样品并立即倒转五次以促进彻底的血液凝结,通过离心收集血清并用于内分泌评估。在受试者的月经周期第2天测量受试者的卵泡刺激素(FSH)水平,并在受试者的月经周期的任何一天测量受试者抗缪勒氏管激素(AMH)水平。使用西门子Immulite 2000免疫分析系统(西门子医疗诊断有限公司,上海,中国)进行血清的FSH测量。FSH测定的质量控制由Bio-RAD实验室提供(Lyphochek Immunoassay Plus Control,Trilevel,目录号370,批号40340)。使用超灵敏两点ELISA试剂盒(Ansh Labs,美国)检测受试者的血清AMH浓度。
[0161] 在本实施例中,月经2-4天时的卵泡刺激素(FSH)水平是指对处于经期第二天~第四天的女性受试者的静脉血血清样本进行检测得到的卵泡刺激素水平。月经周期任何一天的AMH水平是指对处于经期中任一天女性受试者的静脉血血清样本进行检测得到的抗缪勒氏管激素水平。用于构建模型的系统的数据情况如下表1所示。
[0162] 表1进行GnRH拮抗剂治疗的受试者的临床和生化数据
[0163]   2017(n=1523) 2018(n=3273)平均年龄(岁) 33.4±5.3 32.7±4.8
平均FSH(IU/L) 7.5±3.3 7.2±3.1
平均AMH(ng/ml) 2.2(1.1-4.0) 2.7(1.2-4.8)
[0164] 系统模型构建
[0165] 在本实施例中,将上述4796名受试者的卵巢反应差且受试者的卵母细胞少于5(具体来说为0、1、2、3或4)个定义为结果变量,预测变量为年龄,FSH水平和AMH水平。其中,在本实施例中预测模型使用2017年的数据构建的,即利用了1523名受试者的数据来初步构建本申请的模型系统,利用2018年的数据,即3273名受试者的数据来验证系统模型的效果。
[0166] 具体步骤为利用JMP Pro 14.2软件,首先在建模数据中应用多因素逻辑回归,以构建卵巢反应不良的预测模型,并在验证数据中验证模型的效果。利用软件中提供的曲线下面积(AUC)、敏感性、特异性、正预测值(PPV)和负预测值(NPV)的测量来评估已建立的预测模型的性能。
[0167] 首先在建模数据,即1523名受试者的数据中进行多因素逻辑回归,以是否卵巢低反应作为结局变量,以AMH,FSH和年龄作为自变量,由于三个自变量间具有较强的相关性,因此,将三个连续性变量转换为分类变量,三个参数年龄、FSH水平和AMH水平的分组标准,如表2所示。
[0168] 表2分组依据
[0169]
[0170] 依据表2确认的分组已经,将受试者年龄、AMH和FSH转换成多分类变量。将受试者的年龄分为三组,分别为:受试者的年龄在30岁以下,受试者的年龄在大于30岁且在40岁以下,以及受试者的年龄大于40岁。将受试者的抗缪勒氏管激素(AMH)水平分为五组,分别为:受试者的抗缪勒氏管激素(AMH)水平小于0.5ng/ml,受试者的抗缪勒氏管激素(AMH)水平在
0.5ng/ml以上且小于1ng/ml,受试者的抗缪勒氏管激素(AMH)水平在1ng/ml以上且小于
1.5ng/ml,受试者的抗缪勒氏管激素(AMH)水平在1.5ng/ml以上且小于2ng/ml,以及受试者的抗缪勒氏管激素(AMH)水平大于2ng/ml。将受试者的泡刺激素(FSH)水平分为四组,分别为:受试者的泡刺激素(FSH)水平小于6.5IU/L,受试者的泡刺激素(FSH)水平在6.5IU/L以上且小于8.5IU/L,受试者的泡刺激素(FSH)水平在8.5IU/L以上且小于10.5IU/L,以及受试者的泡刺激素(FSH)水平在10.5IU/L以上,从而依据上述标准将年龄、AMH和FSH转换成多分类变量。
[0171] 同时利用上述训练组的数据拟合了如下公式和确认了公式中涉及的参数,如表3所示:
[0172] p=1/(1+e^(-(a+b*age+c*FSH+d*AMH)))(公式一)
[0173] 表3
[0174]
[0175] 如公式一所示p为计算出的用于表征所述受试者的卵巢储备功能的参数,其中,a、b、c和d为无单位参数;其中,在计算卵巢储备功能的模块中,基于受试者的年龄、受试者的抗缪勒氏管激素(AMH)水平和受试者的泡刺激素(FSH)水平来获取b、c和d的取值来带入公式一进行计算,在计算中age,FSH,以及AMH取值为0或1。
[0176] 如表3所示,公式一种涉及的参数为:a为选自-4.072~-3.188中的任意数值,a优选为-3.630;当受试者的年龄在30岁及以下时,age为0,当受试者的年龄在大于30岁且在40岁及以下,age为1,b为选自0.163~0.960中的任意数值,b优选为0.561,以及当受试者的年龄大于40岁时,age为1,b为选自0.295~1.317中的任意数值,b优选为0.806;当受试者的泡刺激素(FSH)水平小于6.5IU/L时,FSH为0,当受试者的泡刺激素(FSH)水平在6.5IU/L及以上且小于8.5IU/L时,FSH为1,c为选自0.239~1.006中的任意数值,c优选为0.622,当受试者的泡刺激素(FSH)水平在8.5IU/L及以上且小于10.5IU/L时,FSH为1,c为选自0.363~1.303中的任意数值,c优选为0.833,以及当受试者的泡刺激素(FSH)水平在10.5IU/L及以上时,FSH为1,c为选自0.847~1.712中的任意数值,c优选为1.279。当受试者的抗缪勒氏管激素(AMH)水平在2ng/ml及以上时,AMH为0;当受试者的抗缪勒氏管激素(AMH)水平小于
0.5ng/ml时,AMH为1,d为选自2.708~3.701中的任意数值,d优选为3.204,当受试者的抗缪勒氏管激素(AMH)水平在0.5ng/ml及以上且小于1ng/ml时,AMH为1,d为选自1.985~2.887中的任意数值,d优选为2.436,当受试者的抗缪勒氏管激素(AMH)水平在1ng/ml及以上且小于1.5ng/ml时,AMH为1,d为选自1.153~2.070中的任意数值,d优选为1.612,当受试者的抗缪勒氏管激素(AMH)水平在1.5ng/ml及以上且小于2ng/ml时,AMH为1,d为选自0.230~
1.356中的任意数值,d优选为0.793。
[0177] 随后利用2018年的3273名受试者的数据利用上述分组依据和公式对数据进行验证。通过如上验证,确认了如上所述构建的模型的获得可以良好地预测受试者的卵巢储备功能。
[0178] 为了验证系统的准确性,我们利用JMP Pro 14.2软件的评估功能评估了本申请系统和在先申请系统(CN201811516206.4)针对相同人群进行评估的准确性,结果参见下表4,从该结果可以看出,本实施例构建的系统和在线申请的系统可以达到相同的评估水平。
[0179] 表4
[0180]
[0181] 由此,根据上述公式一可以基于对某一受试者的年龄、月经周期任一天抗缪勒氏管激素浓度,以及月经2-4天的静脉血中的卵泡刺激素浓度来计算这个受试者的卵巢低反应概率。
[0182] 根据计算出的卵巢低反应概率的参数对人群进行分组,分组方式采取了本申请人在之前确认的分组标准(参见CN201811516206.4),即当计算出的用于表征所述受试者的卵巢低反应概率的参数(p)<10%时,分组模块确定该受试者属于卵巢储备功能良好;当10%≤计算出的用于表征所述受试者的卵巢低反应概率的参数(p)<25%,分组模块确定该受试者属于卵巢储备功能较好;当25%≤计算出的用于表征所述受试者的卵巢低反应概率的参数(p)<50%,分组模块确定该受试者属于卵巢储备功能较差;当计算出的用于表征所述受试者的卵巢低反应概率的参数(p)≥50%,分组模块确定该受试者属于卵巢储备功能差。
[0183] 尽管以上对本发明的实施方案进行了描述,但本发明并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本发明权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本发明保护之列。

当前第1页 第1页 第2页 第3页