首页 / 电导率仪

电导率仪有效专利 发明

技术领域

[0001] 本发明涉及用于测量液体的电导率的电导率测量技术。

相关背景技术

[0002] 作为测量液体的电导率(导电率)的设备,已知有双电极方式的电导率仪。双电极方式的电导率仪是通过在2个电极间施加正弦波、方形波等交流信号并检测电极间产生的电信号来求液体的电导率的测量仪器。双电极方式的电导率仪的现有技术在专利文献1至3中有揭示。
[0003] 例如,专利文献1揭示了一种双电极方式的电导率仪,即,在将2个电极浸于测量对象液体中的状态下检测对一个电极施加有交流电压时的流入至另一个电极的电流,由此,根据测量对象液体的电阻来测量电导率。此外,专利文献2、3揭示了2个电极形成为棒状的双电极方式的电导率仪。现有技术文献
专利文献
[0004] 专利文献1:日本专利特公平7-15490号公报专利文献2:日本专利特开2005-148007号公报
专利文献3:日本专利特开2002-296312号公报

具体实施方式

[0019] 接着,参考附图,对本发明的实施方式进行说明。【第1实施方式】
首先,参考图1~图5,对本发明的第1实施方式的电导率仪10进行说明。图1为表示第1实施方式的电导率仪的电路构成的框图。图2为第1实施方式的电导率仪的侧视图。图3为第
1实施方式的电导率仪的俯视图。图4为第1实施方式的电导率仪的立体图。图5为第1实施方式的电导率仪的另一立体图。
[0020] 如图1~图5所示,本发明的电导率仪10具有如下功能:在安装在测定管3上的2个电极T1、T2间施加交流的矩形波信号SG,根据从T1、T2间检测到的检测电压Vt的振幅,来求与测定管3内的液体相关的电导率。
[0021] 如图1所示,电导率仪10具备检测电路11、运算处理电路12、设定及显示电路13、传输电路14、信号生成电路21、缓冲放大器22作为主要电路部。
[0022] 本发明将这些电路部当中信号生成电路21及缓冲放大器22中的至少任一方或双方贴装在安装于测定管3的外周面当中电极T1、T2的附近位置的副基板(印刷线路基板)2上,并经由跳线J1、J2将电极T1、T2电性连接至副基板2。下面,以将检测电路11、运算处理电路12、设定及显示电路13及传输电路14贴装在主基板(印刷线路基板)1上,并将信号生成电路21及缓冲放大器22贴装在副基板2上的情况为例来进行说明。
[0023] 检测电路11具有通过控制信号生成电路21而对电极T1、T2以预先设定好的信号频率fg施加具有固定振幅(设定电流Is)的交流的矩形波电流作为矩形波信号SG也就是矩形波恒流信号的功能,和检测电极T1、T2中产生的检测电压Vt的振幅并输出至运算处理电路12的功能。
[0024] 关于本发明的电导率仪10的变形,可使用不接触液体的非接液电极作为电极T2,也可使用接触液体的接液电极作为电极T2。在本实施方式中,以电极T2是非接液电极的情况为例进行说明。此外,对电极T2是接液电极的情况则在后述第2实施方式中进行叙述。
[0025] 检测电路11具备时钟生成电路11A、采样保持电路(SH电路)11B及A/D转换电路(ADC电路)11C作为主要电路部。时钟生成电路11A具有根据来自运算处理电路12的时钟信号CLK0来生成矩形波信号SG生成用的时钟信号CLKs和采样控制用的时钟信号CLKh、CLKl的功能。
[0026] 采样保持电路11B具有根据来自时钟生成电路11A的时钟信号CLKh、CLKl对开关SWh、SWl进行导通断开控制,由此对来自缓冲放大器22的输出电压Vt'进行采样保持,并将得到的检测电压VH、VL输出至A/D转换电路11C的功能。A/D转换电路11C具有对来自采样保持电路11B的VH、VL的差分电压也就是Vt的振幅电压进行A/D转换,并将得到的振幅数据DA输出至运算处理电路12的功能。
[0027] 贴装在主基板1上的连接器CN1经由4芯连接线路LC与贴装在副基板2上的连接器CN2连接在一起。由此,主基板1与副基板2电性连接在一起。具体而言,从CN1的端子T11经由LC向CN2的端子T21供给时钟信号CLKs。此外,从CN1的端子T12经由LC向CN2的端子T22供给基准电压Vs。此外,从CN1的端子T13经由LC向CN2的端子T23供给接地电压GND。此外,从CN2的端子T24经由LC向CN1的端子T14供给缓冲放大器22的输出电压Vt'。
[0028] 此外,副基板2经由跳线J1、J2与第1电极T1及第2电极T2电性连接在一起。具体而言,形成在副基板2上的焊盘(电极连接端子)P1经由跳线J1与第1电极T1连接在一起,形成在副基板2上的焊盘(电极连接端子)P2经由跳线J2与第2电极T2连接在一起。P1经由形成在副基板2上的线路图案LP1与副基板2上的接地电压GND连接在一起,P2经由形成在副基板2上的线路图案LP2与副基板2上的信号生成电路21及缓冲放大器22连接在一起。
[0029] 信号生成电路21具有以预先设定好的信号频率fg生成具有固定振幅(设定电流Is)的交流的矩形波电流作为矩形波信号SG也就是矩形波恒流信号的功能。具体而言,信号生成电路21整体上由进行导通断开动作的矩形波电流源IG构成,并且连接至T22的基准电压Vs和T23的接地电压GND,具有根据T21的时钟信号CLKs来生成振幅为设定电流Is且具有与CLKs相同的信号频率fg的矩形波信号SG的功能。
[0030] 缓冲放大器22例如由运算放大器、缓冲电路构成,具有使从电极T1、T2检测到的检测电压Vt稳定而作为输出电压Vt'输出的功能。具体而言,在缓冲放大器22中,输入端子经由LP2连接到焊盘P2,输出端子连接到T24。
[0031] 运算处理电路12具有通过使CPU与程序协作而根据检测电路11中得到的振幅数据DA、借助运算处理来求与测定管3内的液体相关的电导率的功能。运算处理电路12具备电导率算出部12A和空状态判定部12B作为主要处理部。
[0032] 电导率算出部12A具有根据检测电路11中得到的振幅数据DA来算出与测定管3内的液体相关的电导率的功能。具体而言,可使用预先设定的电导率算出公式来计算与来自检测电路11的振幅数据DA相对应的电导率,但也可预先测量振幅数据DA与电导率的对应关系而将得到的特性预先设定为查找表,根据来自检测电路11的振幅数据DA来参考查找表,由此导出与测定管3内的液体相关的电导率。
[0033] 空状态判定部12B具有根据由电导率算出部12A算出的电导率来判定测定管3内有无液体的功能。具体而言,空状态判定部12B对由电导率算出部12A算出的电导率与预先设定的阈值电导率进行比较,在算出的电导率小于阈值电导率的情况下,判定测定管3内不存在液体也就是判定为空状态。
[0034] 设定及显示电路13具备操作用按钮、LED、LCD等显示装置,并且具备检测作业人员的设定操作输入而输出至运算处理电路12的功能和显示来自运算处理电路12的各种数据的功能。传输电路14具备经由传输线路LT在其与控制器等上位装置(未图示)之间进行数据传输的功能和将运算处理电路12中得到的电导率、空状态判定结果发送至上位装置的功能。
[0035] [电导率仪的结构]接着,参考图2~图5,对本实施方式的电导率仪10的结构进行说明。再者,以下,为方便起见,将测定管3延伸的方向称为第1方向X,将与第1方向X正交的测定管3的左右方向称为第2方向Y,将与第1方向X及第2方向Y正交的测定管3的上下方向称为第3方向Z。
[0036] 测定管3由呈圆筒形状的陶瓷、树脂等绝缘性及介电性优异的材料构成,收纳在下侧壳体4的内部。下侧壳体4由在上侧具有开口部4D的有底箱状的树脂或金属框体构成。
[0037] 在下侧壳体4的侧面当中与第1方向X正交的一对侧面4A配设有管状的接头5A、5B,所述接头5A、5B可以连结设置于电导率仪10外部的管道(未图示)与测定管3,由金属材料(例如SUS)构成。测定管3沿第1方向X收纳在下侧壳体4内部,在测定管3的两端部隔着一对O形圈OR分别连结接头5A和接头5B。
[0038] 此处,接头5A、5B中的至少一方作为电极(第1电极)T1而发挥功能。例如,接头5A连接至接地电压GND(公共电位),由此,不仅将外部的管道与测定管3相连结,还作为电极T1而发挥功能。通过像这样利用由金属构成的接头5A来实现电极T1,从而T1与液体接触的面积增大。
[0039] 由此,即便在T1发生了异物的附着、腐蚀的情况下,由于发生了异物的附着、腐蚀的部分的面积相对于T1的总面积而言也相对较小,因此能抑制极化电容的变化造成的测定误差。此外,由于对接头5A施加接地电压GND,因此,即便连接至接头5A的外部管道为金属,外部管道也不会成为天线而放射电磁波噪声。此外,由于接头5A兼用作电极T1,因此无须另行设置T1,从而可以谋求电导率仪10的小型化。
[0040] 另一方面,在下侧壳体4的侧面当中与第2方向Y正交的一对侧面4B和下侧壳体4的底面4E的外侧面安装有由截面匚字形的金属板构成的屏蔽件6。由此,能够减少从电导率仪10放射至外部的噪声。
[0041] 此外,在测定管3的外周面3A当中隔着副基板2与接头5A相反那一侧以跨及测定管3全周的方式图案形成有由薄膜导体构成的面电极(第2电极)T2作为非接液电极。此外,在T2当中副基板2侧的侧端部以朝副基板2突出的方式形成有焊盘P3。
[0042] 如前文所述,将信号生成电路21及缓冲放大器22中的至少任一方贴装在安装于测定管3的外周面3A当中电极T1、T2的附近位置的副基板(印刷线路基板)2上,并经由跳线J1、J2将电极T1、T2电性连接至副基板2。
[0043] 图6为表示副基板的主视图。图7为表示副基板的后视图。如图6所示,在副基板2当中由接头5A构成的电极T1侧的基板面2A上沿第2方向Y在管孔
2H的横向位置图案形成有焊盘P1,经由J1将该P1与T1连接在一起。J1焊接在P1及T1的外表面。
[0044] 此外,如图7所示,在副基板2当中电极T2侧的基板面2B上沿第3方向Z在管孔2H的上方位置图案形成有焊盘P2,经由J2将该P2与P3连接在一起。J2焊接在P2及P3上。此外,在基板面2B当中包含焊盘P2的管孔2H的上侧设置有电路贴装区域2G,供信号生成电路21、缓冲放大器22还有连接器CN2贴装,且经由线路图案LP1、LP2(未图示)连接有P1、P2。
[0045] 由此,能够极度缩短连接副基板2与电极T1、T2的电极线路也就是跳线J1、J2的长度,从而能将J1、J2的阻抗抑制得极低。此外,由于在副基板2上贴装了信号生成电路21或缓冲放大器22,因此,还能将连接主基板1与副基板2的连接线路LC的阻抗抑制得较低。因此,在电导率的测量中可以忽略跳线J1、J2还有连接线路LC的阻抗。
[0046] 如图2所示,在下侧壳体4的上部以覆盖开口部4D的方式安装有上侧壳体9。主基板1固定在该上侧壳体9内,贴装有检测电路11、运算处理电路12、设定及显示电路13、传输电路14等各电路部。副基板2的连接器CN2经由连接线路LC与主基板1的连接器CN1连接在一起。
再者,也可在副基板2当中电路零件、线路图案以外的区域形成与接地电压GND连接在一起的接地图案。由此,可以减少从电导率仪10外部混入电极T2的噪声,从而能抑制测定误差。
[0047] 关于副基板2,只要是在测定管3的外周面3A,便可沿任意方向安装,而本实施方式是通过在副基板2上设置的管孔2H中压入测定管3而将副基板2固定在测定管3上。如图6及图7所示,在副基板2当中朝向纸面而在左右的方向即左右方向Y的中央位置形成有压入测定管3用的管孔2H。由此,可以在不使用安装螺钉等固定构件的情况下以极为简单的构成将副基板2固定在测定管3上。
[0048] 管孔2H的大小设定为与测定管3的外周部的大小相同或者略小。此时,管孔2H无须配合测定管3的外周形状而设为正圆形状,也可设为大致多角形状,图6及图7中是设为大致八角形状。由此,管孔2H的端部与外周面3A部分接触,与跨及管孔2H的端部的全周与外周面3A接触的构成相比,能够抑制从测定管3传递至贴装在副基板2上的信号生成电路21、缓冲放大器22的热的影响。
[0049] 此外,由于在管孔2H与测定管3之间离散地形成间隙2S,因此能容易地对管孔2H压入测定管3,而无须准备压入专用的治具,能够减轻作业负担。再者,管孔2H的形状不限定于大致多角形状,也可在管孔2H的孔壁面配备多个凸部,由该凸部与外周面3A抵接。或者,也可设置管孔2H的周部的一部分朝副基板2的侧端部直接开口的缺口或者间接地开口的狭缝。由此,可以获得与前文所述同样的作用效果。
[0050] 此外,在本实施方式中,在下侧壳体4的侧面4B的内壁部4C形成有由凸状或凹状的轨道构成的一对引导部7X、7Y。以副基板2的侧端部2X、2Y嵌合至这些引导部7X、7Y的方式从下侧壳体4的开口部4D插入副基板2,由此,经由副基板2将测定管3安装在下侧壳体4中。由此,能以极为简单的结构将副基板2还有测定管3安装在下侧壳体4的内部。
[0051] 再者,引导部7X、7Y无须以凸状部分或凹状部分延伸的方式形成,也能以供侧端部2X、2Y顺畅地插入的间隔、以分离为多个的方式形成凸状部分或凹状部分。此外,图3中是以引导部7X、7Y由2根突条构成的情况为例进行展示,但也可以供侧端部2X、2Y插入的槽来代替突条。
此外,无须利用引导部7X、7Y来固定副基板2,相反,在有些许游隙的情况下,在进行接头5A、5B的螺纹固定时,可以缓和施加至测定管3或副基板2的机械应力。
[0052] [第1实施方式的动作]接着,参考图8,对本实施方式的电导率仪10的动作进行说明。图8为表示第1实施方式的电导率仪的动作的信号波形图。
此处,以电极T2为非接液电极、矩形波信号SG为矩形波恒压信号的情况为例来进行说明。
[0053] 时钟生成电路11A根据来自运算处理电路12的时钟信号CLK0来生成矩形波信号SG生成用的时钟信号CLKs和采样控制用的时钟信号CLKh、CLKl。此处展示的是CLKs的频率也就是矩形波信号SG的信号频率fg为150kHz的情况。
[0054] 信号生成电路21根据CLKs对矩形波电流源IG进行导通断开控制。由此,如图8所示,外加电流Ig每隔信号频率fg的半周期在预先设定的设定电流Is与零之间切换一次并被施加至电极T2。因而,通过从信号生成电路21供给的外加电流Ig,因电极T1、T2间的液体的液体电阻而产生的电压成为电极T1、T2间的电压也就是检测电压Vt。
[0055] 采样保持电路11B根据来自时钟生成电路11A的CLKh,对在缓冲放大器22中使Vt稳定(进行阻抗变换)而得到的输出电压Vt'当中供给Is的高电平期间TH(SG的半周期)内的检测电压VH进行采样。此外,采样保持电路11B根据来自时钟生成电路11A的CLKl,对Vt'当中供给零的低电平期间TL(SG的半周期)内的检测电压VL进行采样。
[0056] A/D转换电路11C将采样保持电路11B中得到的VH与VL的差分电压ΔVt A/D转换为振幅数据DA并输出。通常考虑对交流的检测电压Vt进行全波整流的方法,例如使TL内的检测电压Vt在Vt的中间电平上折返并与TH的Vt相加的方法。但在这种方法中,若TL与TH的Vt不相等,则即便进行全波整流也会留下脉动电流,不会成为稳定的直流电压,因此会导致测量误差。
[0057] 根据本实施方式,不对交流的检测电压Vt进行全波整流,在TL和TH内分别单独进行采样,获取得到的VH、VL的差分电压作为振幅数据DA。因此,即便在因液体的流速变化等而导致Vt中包含波动这样的情况或者共模噪声从外部经由液体混入Vt这样的情况下,也能避免对振幅数据DA的影响,从而能实现电导率的稳定的测量。
[0058] 电导率算出部12A根据来自A/D转换电路11C的DA来算出液体的电导率。此外,空状态判定部12B对电导率算出部12A中得到的电导率与阈值电导率进行比较,由此判定测定管3内是否为空状态。
[0059] 图9为矩形波电流源的构成例。如图9所示,矩形波电流源IG具备开关SWi、运算放大器Ug及电流检测电路DET。SWi是根据CLKs来切换输出Vs与GND的模拟开关。DET是检测从IG输出的外加电流Ig的电流值的电路。Ug具有根据来自DET的电流检测输出,将Ig的电流值维持控制在设定电流Is并且根据SWi的输出对Ig的输出进行导通断开控制的功能。
[0060] 图10为第1实施方式的电极侧的等效电路。如前文所述,在本实施方式中,使用矩形波恒流信号作为矩形波信号SG。因而,如图10所示,从副基板2观察到的电极侧的等效电路成为表示电极T1、T2间的阻抗那一侧的等效电路Zt连接于信号生成电路21的矩形波电流源IG的形式。
[0061] 此时,在Zt中,在电极T1、T2与液体的接触时在电极-液体间产生极化电容Cp及极化电阻Rp,而由于T2为非接液电极,因此在液体与电极T2之间产生电极电容Ct。因而,若将与电极T1、T2间的液体相关的液体电阻设为Rl,则Zt以极化电容Cp及极化电阻Rp的并联电路、液体电阻Rl以及电极电容Ct串联而成的等效电路表示。此处,在将矩形波信号SG的信号频率设为fg=150kHz的情况下,虽然Cp的阻抗相对较小,但Ct的阻抗在一定程度上增大,因此Ct的两端电压Vct还有Vt过渡性地发生变化。
[0062] 图11为表示使用了矩形波恒压信号的电导率仪的动作的信号波形图。在与图8同样地设为fg=150kHz的情况下,虽然Cp的阻抗相对较小,但Ct的阻抗在一定程度上增大。因而,在使用具有固定振幅(设定电压Vs)的交流的矩形波电压作为矩形波信号SG也就是矩形波恒压信号的情况下,Vct、Vrl还有Vt会以各自的时间常数呈指数函数变化,无法再使VH、VL稳定并对其进行检测。
[0063] 如此,在Vt的波形发生了畸变的情况下,在振幅数据DA的检测时容易包含误差,结果导致与电导率相关的测定精度降低。因此,须使用Cp、Ct的阻抗可以忽略的程度的较高频率作为fg。另一方面,若提高fg,则会像图18所示的以往的等效电路那样电极线路的线间电容Cw造成的影响增大而在电极线路中发生信号泄漏,从而导致Vt的波形发生畸变。
[0064] 相对于此,在本实施方式中,由于使用的是矩形波恒流信号作为矩形波信号SG,因此,即便在设为fg=150kHz的情况下,Vct及Vt的倾斜也呈线性,从而能使VH、VL稳定并对其进行检测。
[0065] 若将外加电流Ig为设定电流Is的高电平期间TH内检测到的检测电压Vt设为VH、将这时的Vrl及Vct设为VrlH及VctH,则VH=VrlH+VctH。此外,若将Ig=0的低电平期间TL内检测到的检测电压Vt设为VL、将这时的Vrl及Vct设为VrlL及VctL,则VL=VrlL+VctL。
[0066] 此时,虽然检测到的VH、VL中包含Vct,但由于CLKh及CLKl表示TH、TL(SG的半周期)的中央位置,因此采样到的VH与VL中包含的VctH与VctL相等。由此,通过取VH与VL的差分电压ΔVt,则VctH与VctL相抵消,从而可以获得不含Vct的振幅数据DA。
[0067] 即,ΔVt=VH-VL=VrlH-VrlL。由此,由于Ig是固定的,因此Rl可通过以下式(1)求出。【式1】
[0068] 式(1)中,Ig是已知的,差分电压VH-VL由SH电路11B加以检测并在A/D转换电路11C中转换为振幅数据DA而输入至运算处理电路12。因而,电导率算出部12A可以根据这些数据容易地算出Rl。
[0069] 图12为表示振幅数据与电导率的对应关系的特性图,纵轴表示振幅数据DA,横轴表示电导率。也可通过使用多种电导率已知的标准流体进行校准作业来预先测量这种振幅数据DA与电导率的对应关系,将得到的特性制成查找表并设定在例如半导体存储器(未图示)中,由电导率算出部12A根据来自检测电路11的振幅数据DA来参考查找表,从而导出与测定管3内的液体相关的电导率。
[0070] [第1实施方式的效果]如此,本实施方式中,信号生成电路21以预先设定好的信号频率fg生成具有固定振幅的交流的矩形波电流作为矩形波信号SG,并施加到安装在测定管3上的电极T1、T2,检测电路11通过对从这些T1、T2检测到的检测电压Vt进行采样,来对检测电压Vt的振幅进行检测。
由此,即便fg相对较低,检测电压Vt的倾斜也呈线性,从而能够使检测电压Vt的振幅稳定并对其进行检测。因而,可以使用能够抑制连接T1、T2的电极线路的线间电容造成的影响的程度的频率作为fg,从而能够以高精度测量电导率。
[0071] 此外,在本实施方式中,也可使用与液体接触的接液电极作为T1,使用形成在测定管3的外周部而不与液体接触的非接液电极作为T2。由此,因此能够抑制电极面上的污物附着、电极的腐蚀所引起的测量误差的产生。此外,无须使用铂黑之类的昂贵的接液电极,从而谋求大幅的成本下降。此外,在使用了非接液电极的情况下,虽然在电极与液体间产生电极容量Ct,但由于使用矩形波恒流信号作为矩形波信号SG,因此能够使检测电压Vt的振幅稳定并对其进行检测。
[0072] 此外,在本实施方式中,检测电路11也可在矩形波信号SG的半周期的中央时间位置对检测电压Vt进行采样。由此,即便在使用非接液电极作为T2的情况下,高电平期间TH内采样到的VH中包含的T2的电极电容Ct的两端电压VctH与低电平期间TL内采样到的VL中包含的Ct的两端电压VctL也相等。因而,通过取VH与VL的差分电压ΔVt,则VctH与VctL相抵消,从而可以获得不含Vct的振幅数据DA。因此,能以高精度测量电导率。
[0073] 此外,在本实施方式中,也可通过电流检测电路DET和运算放大器Ug来构成信号生成电路21的矩形波电流源IG,所述电流检测电路DET对作为矩形波信号SG的外加电流Ig的大小进行检测,所述运算放大器Ug根据表示信号频率fg的时钟信号CLKs和来自电流检测电路DET的检测结果将Ig的振幅维持为设定电流Is。由此,能以相对简单的构成生成高精度的、稳定的Ig。
[0074] 此外,在本实施方式中,也可在安装在测定管3上的电极T1、T2的附近位置配置副基板2,并将生成矩形波信号SG的信号生成电路21以及使从电极T1、T2检测到的检测电压Vt稳定而输出的缓冲放大器22中的至少任一方或双方搭载于副基板2上。由此,能够大幅缩短连接信号生成电路21、缓冲放大器22与电极T1、T2的电极线路也就是跳线J1、J2的长度,从而能减小电极线路间的线间电容。因此,即便使用相对较高的信号频率,也能以高精度测量电导率。
[0075] 此外,在本实施方式中,也可在副基板2上设置供测定管3插入的管孔2H,通过管孔2H与测定管3的外周面3A相抵接而将副基板2安装在外周面3A上。
由此,可以在不使用安装螺钉等固定构件的情况下以极为简单的构成将副基板2固定在测定管3上。
[0076] 此外,通过这种构成,可以使副基板2以与测定管3的长度方向正交的方式配置在电极T1与电极T2之间。因此,可以在不同的位置及方向上配置、连接从副基板2到电极T1、T2的电极线路也就是跳线J1、J2,从而能极度减小电极线路间的线间电容。此外,在作为电极T1的接头5A上连接的是金属管道的情况下,对液体的外加电流有可能传递至金属管道而产生测量误差,而通过上述构成,能以距T1保持一定程度的距离的方式容易地配置T2。因而,能够抑制外加电流向金属管道的传递而高精度地测量电导率。
[0077] 此外,在本实施方式中,也可在副基板2的图案面上形成用于连接去往电极T1、T2的电极线路的焊盘(电极连接端子)和用于连接焊盘与信号生成电路21及缓冲放大器22中的至少任一方或双方的线路图案。由此,可以通过跳线J1、J2而不使用连接器来极为容易地连接贴装在副基板2上的信号生成电路21、缓冲放大器22与电极T1、T2。
[0078] [第2实施方式]接着,参考图13~图16,对本发明的第2实施方式的电导率仪10进行说明。图13为第2实施方式的电导率仪的侧视图。图14为第2实施方式的电导率仪的俯视图。图15为第2实施方式的电导率仪的立体图。图16为第2实施方式的电导率仪的另一立体图。
[0079] 在第1实施方式中,以使用不接触液体的非接液电极作为电极T2的情况为例进行了说明。在本实施方式中,对使用接触液体的接液电极作为电极T2的情况进行说明。
[0080] [电导率仪的结构]接着,参考图13~图16,对本实施方式的电导率仪10的结构进行说明。再者,以下,为方便起见,将测定管3延伸的方向称为第1方向X,将与第1方向X正交的测定管3的左右方向称为第2方向Y,将与第1方向X及第2方向Y正交的测定管3的上下方向称为第3方向Z。
[0081] 测定管3由呈圆筒形状的陶瓷、树脂等绝缘性及介电性优异的材料构成,收纳在下侧壳体4内部。下侧壳体4由有底箱状的树脂或金属框体构成。
[0082] 在下侧壳体4的侧面当中与第1方向X正交的一对侧面4A配设有管状的接头5A、5B,所述接头5A、5B可以连结设置于电导率仪10外部的管道(未图示)与测定管3,由金属材料(例如SUS)构成。此时,测定管3沿长度方向X收纳在下侧壳体4内部,在测定管3的两端部隔着一对O形圈OR分别连结接头5A和接头5B。
[0083] 此处,接头5A、5B中的至少一方作为电极(第1电极)T1而发挥功能。例如,接头5A连接至接地电压GND(公共电位),由此,不仅将外部的管道与测定管3相连结,还作为电极T1而发挥功能。通过像这样利用由金属构成的接头5A来实现电极T1,T1与液体接触的面积增大。由此,即便在T1发生了异物的附着、腐蚀的情况下,发生了异物的附着、腐蚀的部分的面积相对于T1的总面积而言也相对较小,因此能抑制极化电容的变化造成的测定误差。
[0084] 另一方面,在下侧壳体4的侧面当中与第2方向Y正交的一对侧面4B和下侧壳体4的底面4E的外侧面安装有由截面匚字形的金属板构成的屏蔽件6。由此,能够减少从电导率仪10放射至外部的噪声。
[0085] 此外,在测定管3的外周面3A当中隔着副基板2与接头5A相反那一侧以贯穿测定管3的壁部而突出至测定管3内的方式安装有由金属棒体构成的接液电极(第2电极)T2。突出到测定管3内的部分与测定管3内的液体接触。
[0086] 如前文所述,将信号生成电路21及缓冲放大器22中的至少任一方贴装在安装于测定管3的外周面3A当中电极T1、T2的附近位置的副基板2上,并经由跳线J1、J2将电极T1、T2电性连接至副基板2。此时,具体而言,J1焊接在P1及T1的外表面,J2焊接在P2及T2上。
[0087] [第2实施方式的动作]接着,对本实施方式的电导率仪10的动作进行说明。
在将电极T2从非接液电极变更为接液电极的情况下,非接液电极的情况下的T2与液体之间的电极电容Ct消失。因此,图10所示的等效电路Zt以极化电容Cp及极化电阻Rp的并联电路与液体电阻Rl串联而成的等效电路表示。本实施方式的这以外的电导率测量动作与第
1实施方式相同,此处的详细说明从略。
[0088] [第2实施方式的效果]如此,本实施方式中,电极T1、T2由与液体接触的接液电极构成。由此,可以排除使用非接液电极作为T2的情况下特有的、液体与电极T2之间产生的电容Ct造成的影响,从而可以使用相对较低的频率作为矩形波信号SG的信号频率。因此,能够极度减小电极线路也就是跳线J1、J2的线间电容造成的影响,从而能以极高精度测量电导率。
[0089] [实施方式的扩展]以上,参考实施方式对本发明进行了说明,但本发明并不限定于上述实施方式。可以在本发明的范围内对本发明的构成、详情进行本领域技术人员能够理解的各种变更。此外,各实施方式可以在不发生矛盾的范围内任意组合来加以实施。
符号说明
[0090] 10…电导率仪,1…主基板,2…副基板,2A、2B…基板面,2G…电路贴装区域,2H…管孔,2S…间隙,2X、2Y…侧端部,3…测定管,3A…外周面,4…下侧壳体,4A、4B…侧面,4C…内壁部,4D…开口部,4E…底面,5A、5B…接头,6…屏蔽件,7X、7Y…引导部,9…上侧壳体,11…检测电路,11A…时钟生成电路,11B…采样保持电路(SH电路),11C…A/D转换电路(ADC回路),12…运算处理电路,13…设定及显示电路,14…传输电路,21…信号生成电路,22…缓冲放大器,IG…矩形波电流源,T1、T2…电极,P1、P2、P3…焊盘,J1、J2…跳线,LC…连接线路,CN1、CN2…连接器,LP1、LP2…线路图案,SWg、SWh、SWl、SWi…开关,CLK0、CLKs、CLKh、CLKl…时钟信号,Vs…基准电压,GND…接地电压,SG…矩形波信号,Vg…外加电压,Ig…外加电流,Vt、VH、VL…检测电压,Vt'…输出电压,DA…振幅数据。

当前第1页 第1页 第2页 第3页