技术领域
[0001] 本发明涉及压印光刻。
相关背景技术
[0002] 光刻装置是一种将希望的图案施加到衬底的目标部分上的机器。光刻装置通常用于,例如,集成电路(IC)、平板显示器和其它包括精细结构的器件的制造中。
[0003] 希望减小光刻图案中特征的尺寸,因为会使得在给定衬底区上具有较大的特征密度。在光刻中,通过使用短波长辐射来增加分辨率。然而,存在与上述减小相关的问题。开始采用使用193nm波长辐射的光刻装置,但甚至在该水平,衍射限制成为阻碍。在较低波长处,投射系统材料的透明度差。因而,能够增强分辨率的光学光刻可能需要复杂的光学器件和稀有的材料,因此昂贵。
[0004] 作为压印光刻而公知的印刷小于100nm特征的替代方法,包括通过使用物理模子或模板将图案压印到可压印的媒介中来将图案转移到衬底。可压印媒介可以是衬底或者涂敷在衬底表面上的材料。可压印媒介可以是功能性的或者用作“掩模”以将图案转移到下面的表面。例如,提供可压印媒介作为沉积在衬底(例如半导体材料)上的抗蚀剂,由模板限定的图案将被转移到压印媒介中。因而压印光刻基本上是关于微米或纳米级的模制工艺,其中模板的外形限定了产生在衬底上的图案。正如用光学光刻工艺一样,可以层叠图案以便通常的压印光刻可以用于像集成电路制造的这样的应用中。
[0005] 压印光刻的分辨率仅仅受模板制造工艺的分辨率限制。例如,使用压印光刻以制造具有优良分辨率和线边缘粗糙度且小于50nm范围的特征。另外,压印工艺不需要昂贵的光学器件、高级光源或者光学光刻工艺典型需要的专门的抗蚀剂材料。
具体实施方式
[0026] 存在通常被称为热压印光刻和UV压印光刻的两种主要压印光刻的方法。也有被称为软光刻的第三种“印刷”光刻。在图1a-1c中说明这些例子。
[0027] 图1a示意地描述软光刻工艺,其包括将分子层11(典型地是墨水,如硫醇)从柔性模板10(典型地由聚二甲基硅氧烷(PDMS)的制造)转移到支撑在衬底12和平面化和迁移层12’上的抗蚀剂层13上。模板10在其表面上具有特征的图案,分子层沉积在特征上。当模板压靠在抗蚀剂层上时,分子层11粘到了抗蚀剂上。当从抗蚀剂移除模板后,分子层
11就粘到抗蚀剂上,蚀刻其余的抗蚀剂层,使得没有被已迁移的分子层覆盖的抗蚀剂区域一直蚀刻到衬底。
[0028] 用于软光刻的模板容易变形,因此不适合高分辨率应用,例如,纳米级,因为模板的变形对压印图案有不利地影响。而且,当制造多层结构时,其中相同的区域被重叠多次,软压印光刻不能够提供纳米级的重叠精确度。
[0029] 当热压印光刻用于纳米级上时,热压印光刻(或者热压纹)也被称为纳米压印光刻(NIL)。该工艺使用由例如更耐磨损和抗变形的硅和镍形成的较硬模板。这例如在美国专利No.6,482,742中描述并在图1b中说明。在典型的热压印工艺中,将固体模板14压印到热固性或热塑性聚合树脂15中,所述热固性或热塑性聚合树脂被设在衬底表面上。树脂,例如,被旋涂并烘在衬底表面上或更典型地(如在所示的例子中)在平面化和转移层12’上。应当理解当描述压印模板时术语“硬”包括通常被认为是介于“硬”与“软”材料之间的材料,例如“硬”橡胶。用作压印模板的具体材料的适合性由其应用需求决定。
[0030] 当使用热固性聚合树脂时,将树脂加热到一定温度,使得一旦与模板接触,树脂充分流动以流到限定在模板上的图案特征中。然后提高树脂的温度以热固化(例如交联)树脂,以便将其凝固并不可逆转地采用所需的图案。然后除去模板并冷却图案化的树脂。
[0031] 用于热压印光刻工艺的热塑性聚合树脂的例子是聚甲基丙烯酸甲脂、聚苯乙烯、聚甲基丙烯酸苯甲脂或者聚甲基丙烯酸环己脂。加热热塑性树脂以便其在马上与模板压印之前处于自由流动状态。典型地需要将热塑性树脂加热到远远高于树脂的玻璃转化温度的温度。将模板压印到可流动的树脂中并施加足够的压力以确保树脂流到限定在模板上的所有图案特征中。然后在模板就位的同时,将树脂冷却到其玻璃转化温度之下,因此树脂不可逆转地采用所需图案。图案由树脂残留层中的凹凸特征组成,然后用适当的蚀刻工艺除去树脂残留层以仅留下图案特征。
[0032] 从固化树脂除去模板后,就典型地执行如图2a至2c所示的两步蚀刻工艺。衬底20具有直接在其上的平面化和转移层21,如图2a所示。平面化和转移层的目的是双重的。
它用于提供基本上平行于模板的表面,其有助于确保模板与树脂之间的接触是平行的,也用于提高印刷特征的高宽比,如下面所述。
[0033] 在除去模板之后,凝固树脂的残留层22留在平面化和转移层21上,形成所需的图案。第一蚀刻是各向同性的并除去残留层22的各个部分,导致较小的特征高宽比,其中L1是特征23的高度,如图2b所示。第二蚀刻是各向异性的(或选择性)并改善了高宽比。各向异性蚀刻除去没有被凝固树脂覆盖的平面化和转移层21的部分,增加了特征23与(L2/D)的高宽比,如图2c所示。如果压印聚合物具备充足的抗蚀性,蚀刻之后留在衬底上的最终聚合物厚度对比度用作例如干法蚀刻的掩模,例如用作剥离工艺中的步骤。
[0034] 热压印光刻的不足在于不仅必须在高温下执行图案转移,而且为了确保在除去模板之前树脂被充分地凝固需要相对大的温度差。需要35与100℃之间的温度差。于是例如衬底与模板之间的不同的热膨胀会导致转移图案变形。这会被压印步骤中所需的相对高压所恶化,这是由于诱使衬底中机械变形的压印材料的粘性再次使图案变形引起的。
[0035] 另一方面,UV压印光刻不涉及高温和高温变化,也不需要上述粘性压印材料。相反地,UV压印光刻包括使用部分的或整个的透明模板和可UV固化液体,典型地是单体例如丙烯酸酯或甲基丙烯酸酯。通常,可以使用任何的光聚合材料,例如单体和引发剂的混合物。可固化液体例如也可以包括二甲基硅氧烷衍生物。上述材料较用于热压印光刻的热固性和热塑性树脂具有小的粘性,因而移动更快以填充模板图案特征。低温和低压操作有利于更高的产能。
[0036] 图1c中展示了UV压印工艺的例子。采用与图1b工艺相似的方法将石英模板16施加到UV可固化树脂17中。没有像在使用热固性树脂的热压印中提高温度,或当使用热塑性树脂时的温度循环,为了聚合并因此固化树脂,将UV辐射经石英模板施加到树脂上。一除去模板,蚀刻抗蚀剂的残留层的其余步骤与上面描述的热压印工艺相同或相似。典型地使用的UV可固化树脂具有比典型的热塑性树脂更低的粘性以便使用较低的压印压力。由于低压而减小的物理变形与由于高温和温度变化而减小的变形一起使UV压印光刻适合于需要高重叠精确度的应用。另外,UV压印模板的透明性能够使得在压印的同时采用光学对准技术。
[0037] 尽管这种类型的压印光刻主要使用UV可固化材料,并因此通常称为UV压印光刻,可以使用其它的辐射波长固化适当选择的材料(例如激活聚合或交联反应)。通常,如果可用适当的可压印材料,就可以使用能够激发上述化学反应的任何辐射。可替换的“激活辐射”例如包括可见光、红外光、x射线辐射和电子束辐射。在上面的一般描述中,以及下面,提到的UV压印光刻和使用UV辐射不排除这些和其它激活辐射的可能性。
[0038] 作为使用基本上与衬底表面保持平行的平面模板的压印系统的替换例,开发了滚轮压印系统。已经提出了热和UV滚轮压印系统,其中模板形成在滚轮上,然而在别的方面该压印工艺很相似于使用平面模板的压印。除非上下文另有要求,否则提到压印模板时包括滚轮模板。
[0039] 存在称为分步快速压印光刻(SFIL)的UV压印技术的特定显影,分步快速压印光刻(SFIL)用于以与常规IC制造中使用的光学步进器相似的方式以较小的步幅图案化衬底。这包括通过将模板压印到UV可固化树脂中一次印刷衬底的较小区域,使UV辐射“快闪”通过模板以固化模板下的树脂,除去模板,步入衬底的邻近区域并重复操作。上述步骤的小的区域尺寸和重复工艺有助于减小图案变形和CD变化,以致SFIL特别适合制造IC和需要高重叠精确度的其它器件。
[0040] 尽管原则上可以将UV可固化树脂应用于整个衬底面上,例如通过旋涂,但由于UV可固化树脂的易挥发性这可能是问题。
[0041] 解决该问题的一个方法是所谓的“按需要时滴液”,其中在马上与模板压印之前树脂以液滴的形式分配在衬底的目标部分上。控制液体分散以便将预定量的液体沉积在衬底的具体目标部分上。以多种图案来分散液体,使用仔细控制液体量结合布置图案来限定图案化目标区域。
[0042] 如提到的按需求分配树脂不是无关重要的事。由于相邻的液滴一接触,树脂就没地方流动,所以仔细地控制液滴的尺寸和间隔以确保有充足的树脂填充模板特征,同时最小化被滚成不理想厚度或不均匀残留层的多余树脂。
[0043] 尽管上面参照了将UV可固化液体沉积在衬底上,但液体也可沉积在模板上,通常使用相同的技术和考虑。
[0044] 图3说明了模板、可压印材料(可固化单体、热固性树脂、热塑性的等)和衬底的相对尺寸。衬底的宽度D与可固化树脂层的厚度t的比率大约是106。可以理解,为了避免从模板突出的特征破坏衬底,尺寸t应当比模板上的突起特征的深度大。
[0045] 在压制之后留下的可压印材料的残留层用于保护下面的衬底,但也会影响获得高分辨率和/或重叠精确度。第一“突破”蚀刻是各向同性(非选择性),因而在一定程度上侵蚀了压印的特征以及残留层。如果残留层是过厚和/或不均匀就可能恶化。
[0046] 例如,这种蚀刻可能导致最终形成在下层衬底上的特征的厚度方面的变化(即,临界尺寸的变化)。采用第二各向异性蚀刻在转移层中蚀刻的特征的厚度的一致性取决于留在树脂中的特征形状的高宽比和完整性。如果残留树脂层是不均匀的,那么非选择性第一蚀刻可能留下一些具有“圆形”顶部的特征使得它们没有被充分地良好的限定以致不能在第二和任何随后蚀刻工艺中确保良好的特征厚度均一性。
[0047] 原则上,通过确保残留层尽可能的薄会减少以上的问题,但这需要使用不想要的大的压力(可能增加衬底变形)和相对长的压印时间(可能会降低产量)。
[0048] 如上所述,模板表面上的特征的分辨率是关于印在衬底上的特征的可获得的分辨率的限制因素。用于热和UV压印光刻的模板通常在两个阶段的工艺中形成。最初,例如使用电子束写入来写入所需图案以在抗蚀剂中给出高分辨率图案。然后将抗蚀剂图案转移到形成用于最后的、各向异性蚀刻步骤的掩模的铬薄层中,以将图案转移到模板的基础材料中。可以使用其它的技术,例如离子束光刻、X射线光刻、远UV光刻、外延生长、薄膜沉积、化学蚀刻、等离子蚀刻、离子蚀刻或离子铣削。通常,由于模板是具有被模板上的图案的分辨率限定的转移图案的分辨率的1x掩模,因此想要具有很高分辨率的技术。
[0049] 也可以考虑模板的释放特性。例如用表面处理材料处理模板以在具有低表面能的模板上形成薄释放层(薄松开层也可以沉积在衬底上)。
[0050] 在压印光刻的开发中的另一考虑是模板的机械耐久性。在压制可压印媒质的过程中模板经受了大的压力,在热压印光刻的情况下,它也可以经受高压和高温。受力、压力和/或温度引起模板的损耗,不利地影响压印在衬底上的图案的形状。
[0051] 在热压印光刻中,为了帮助减小模板和衬底之间的不同的热膨胀,使用与待图案化的衬底相同或相似材料的模板来实现潜在的优势。在UV压印光刻中,模板对激活辐射至少是局部透明的,因此使用石英模板。
[0052] 尽管在该文中具体参考了在IC制造中压印光刻的使用,但应当理解所描述的压印装置和方法具有其它的应用,例如集成光学系统的制造、用于磁畴存储器的制导和探测、硬盘磁性媒介、平板显示器、薄膜磁头等等。
[0053] 当在上面说明中,具体参照使用压印光刻来通过有效地用作抗蚀剂的可压印树脂将模板图案转移到衬底中,在一些情况下,可压印材料本身就是功能材料,例如具有例如导电性、光学线性或非线性响应等等的功能。例如,功能材料可以形成导电层、半导体层、电介质层或具有另一理想机械、电子或光学待性的层。一些有机物质也可以是适合的功能性材料。上述应用可以在本发明的一个或多个实施例的范围内。
[0054] 在减小特征宽度方面,压印光刻系统提供了超过光学光刻的优势。然而,在衬底上的每个位置处压制和固化树脂所花费的时间限制了压印光刻系统的产量,因此也限制了采用压印光刻可获得的经济优势。
[0055] 本发明的实施例包括使用位于彼此平行工作的相同压印装置上的多个模板,而不使用装置上的单一模板。
[0056] 图4说明了基本上由可压印媒介覆盖的衬底40。平行并彼此邻近地移动第一和第二模板41、42以将分别通过模板41、42限定的图案压印到可压印媒介中,然后按照一轮或多轮蚀刻将其复制在衬底中,以在压印之后除去保留在图案特征之间的可压印媒介的残留层,然后蚀刻残留层下的衬底的暴露区域。
[0057] 在实施例中,彼此相对地安装模板以便它们总是印制具有固定空间间隔的区域。根据可替换实施例,为了更好地或最佳地覆盖待压印表面的区域可以彼此相对地自由移动模板。该实施例的改进包括至少一个具有比其它模板更小面积的模板。在该系统中,较大的模板压印衬底的主要区域,同时较小的模板围绕着压印区域的边缘或在由较大模板留下的压印区域之间的间隙之间移动。
[0058] 对于特殊应用,上述实施例可以应用于按需求滴入的工艺(例如,SFIL),其中将可压印媒介施加到所需的衬底,而没有在压印之前分配到整个衬底。图5展示了上述配置。使用反向平行并彼此邻近地移动的第一和第二模板51、52图案化衬底50的一部分。每个模板51、52都具有相关的分配器53、54,配置该分配器53、54以直接在模板51、52前面(即,在待下次压印的衬底的目标部分上)以按需求滴入的方式定量提供一定量的可压印媒介
55、56。例如,可以安装按需液滴分配器以随着相应的模板移动。
[0059] 图6显示了本发明的替换实施例。使用第一和第二模板61、62图案化衬底60的部分(由虚线划出的部分)。模板支架63、64支撑压印模板61、62。平行且彼此邻近地移动压印模板61、62和模板支架63、64,如箭头A所示。
[0060] 每个模板61、62具有相关的多个分配器65-68。配置那些分配器66、67以在压印模板之前定量提供一定量的可压印媒介(未显示),当分配器在所示的方向移动时,分配器位于压印模板61、62的前方。这以按需滴液方式进行。将分配器66、67固定在模板支架63、64上,并且以预定距离与压印模板61、62分离。这允许在沉积可压印媒介与将压印模板施加到可压印媒介之间设置固定的时间,以便衬底的所有部分具有相同的固定时间,对产生更好产量的衬底上的所有部分给出非常均匀的处理条件。通过使分配器靠近模板,可以缩短沉积可压印媒介与将压印模板施加到可压印媒介之间的固定时间,该时间的缩短有益于产量的提高,并可以降低在将压印模板施加到可压印媒介之前可压印媒介的蒸发量。
[0061] 在一些情况下,希望在压印之前在x方向上(这包括负x方向)移动压印模板61、62。在执行该操作的位置,使用提供在模板支架63、64的适当侧边处的分配器65、68。应当理解如果需要,分配器可以提供在模板支架63、64的其它侧面上。
[0062] 分配器65-68各自包括多个孔(例如喷墨嘴),配置多个孔以将可压印媒介的液滴阵列分配在衬底60上。多个孔例如是二维阵列,如图6所示。例如配置可压印媒介的液滴阵列以与压印模板61、62的尺寸对应。
[0063] 图7显示了本发明的另一个可替换的实施例。图7所示的实施例大部分与图6所示的实施例对应,除了替换包括用于分配可压印媒介的孔阵列的每个分配器之外,每个分配器71-74包括单排孔。例如孔是喷墨嘴。在使用这种类型的分配器的位置,当模板支架63、64在压印位置之间移动时分配可压印媒介。这允许可压印媒介在例如待压印衬底的一部分上分配。
[0064] 尽管在本发明的一些上述实施例中提到分配器连接到模板支架,但可以理解在一些情况下分配器可直接连接到压印模板。通常,分配器与压印模板连接,并可相对于压印模板固定。
[0065] 通过在沉积可压印媒介与对每个模板压印之间设定时间来提高或者最优化系统的产量,以便压印同步或非同步地发生。对于两个模板系统,通过配置压印和适当的固化时间来获得接近30-70%的产量提高。
[0066] 虽然在上面已经说明了本发明的具体实施例,但可以理解可采用描述之外的方法实施本发明。这里的说明不是用于限制本发明。例如,可以使用任何数量的具有适当尺寸和/或形状的模板以适合具体的运用。另外,可以监视和控制模板围绕衬底移动的速度,以便针对具体的衬底尺寸和图案密度提供好的或最佳的压印率。