首页 / 纤维增强复合塑料材料

纤维增强复合塑料材料无效专利 发明

技术内容

本发明涉及用于制造塑料模压制件的纤维增强塑料材料,特别是涉及这样的材料:即它同时含有热固性和热塑性成份,且其以特别的方式将两者结合起来,使两者的优点均达得到最高境界。 模塑工得到的热固性材料通常都呈液体状或是遇热软化的粉状,它们可被用来浸渍增强纤维材料或可与短增强纤维或填充料混合。当热固性材料被制成所要求的形状并加热到一定温度时,它们就会发生一种不可逆的化学变改并按该形状变成固体状。所得到的制件一般都表现出良好的刚性及强度,以及特别良好的耐热性和长时间承受机械虚力的性能。 然而,由于该热固过滤是不可逆的,所以废品就不能被切碎再将材料重新利用。制件也比较脆。更重要的是成形过程很慢,要费好几分钟,因为在固化过程完成以进,模子必须保持闭合位置。特别由于这个原因,热固性材料并未置身于现代化高速生产技术的范围内。结果,尽管由热固性材料模压的制件有一些优点,它们还是在被热塑性材料逐步取代。 热塑性材料的例子有:苯酚甲醛树脂,尿素及密胺甲醛树脂、环氧树脂、不饱和聚酯以及聚胺酯。 制造商能得到的热塑性塑料通常为颗粒状,细粒状或是板状。它们遇热时软化,可被压制、模铸、挤压或铸造成所要求的形状,并在冷却时固化。软化和硬化的过程比较快,所以制件可以在多少秒的时 间内模压、冷却固化并从模中取出,而不需花好几分钟。制件可以含有填充料及增加纤维。在热塑性材料是板材的情况下,增加物质采用纤维布或纤维组物的形式。如果是颗粒状或细粒状材料则用短纤维。用热塑性材料模压成的制品一般较热固性塑料制品更轻且往往更结实。但它们的刚性较低,尤其是在长时间受力的情况下。它们的耐热性自然也较差。 热塑性塑料的例子有有:聚烯烃,聚苯乙烯,聚酰胺,聚氯乙烯及饱和聚酯,以及这些材料的混合物。 人们已经作了一些偿试想结合热塑性材料和热固性塑料以制成一个至少达到每种材料的某些技术优点的单个制件。例如,在制造象浴缸之类的制件时,先通过加热和真空成形的方法用热塑性塑料板材快速地生产出一个初步的制品,通过在模子中进行表面涂层处理并出模后,冷却了的制件表面被涂上经短玻纤增强的液状热固性聚酯树脂,然后让其保持形状并凝固。这种方法的优点是避免了制件在模子中长时间停留。但在制成品使用过程中则出现了因两种材料粘合不足而发生的缺陷。这是由于两种材料热膨胀率不同而引起的,它导致翘卷和剥离现象。 本发明的目的包括要提供一种结合热塑性和热固性材料的方法,使用由此而得到的材料制出的制件能致少避免现有技术的某些缺点。 根据本发明的一个方面,一种纤维增强材料包括多孔状的热塑性材料基质和增强纤维。该基质的气孔全部或部分地被一种热固性材料包复。 本发明亦适用于由一种特别的塑料结构组成的板材或制件,在这种结构中,热固性塑料材料已经凝固。 另一方面,本发明提供了组成一种增强塑料结构的一种方法,这种结构形成一种包括热塑性材料与增强纤维的步骤,以及用热固性材料包复该基质的步骤。 该多孔状的基质可以以多种方法形成,例如,一个开放的含纤维的结构,具有20%至60%重量的有高弹性模数(如这里的定义的)的加强纤维其长度为大概7至50毫米之间,和40%至60%重量的完全或基本上未经压实的细粒状塑料材料,其中纤维成份及塑料成份结合在一起形成1984年1月6日与本文同时提出的英国专利申请号第8400290号中所述的方法结合成的一种透气的结构。另一种方法是在热塑性材料和增强纤维的复合的复合结构中添加发泡剂,在按顺序进行加热和加压,再冷却减压时,发泡剂就使其膨胀并变成透气的多孔状。 该多孔状基质可由一种纤维增强热塑性材料构成,这种材料先经加热并在压力下冷却,再经再加热处理,让纤维的回弹性能使基质再次膨胀并形成多孔状。这种方法见于1984年1月6日同时申请的英国专利申请号第8400293号。 本发明的这种纤维增强塑料结构使具有快速成形能力的热塑性材料获得热固性塑料材料的优良的抗机械力及耐热的性能。由于两种材料结合得很紧密,实际上不可能产生剥离的情况,而且,也几乎没有因热膨胀率不同而发生变形或剥离的风险。 基质可用液状热固性材料完全浸渍或包复。在此情况下,以这种基质制成的制件的密度较大。也可将基质的表层用例如刷涂等办法浸 渍。这样可制出较轻的制件,但同未浸渍的基质相比可足够大地增加刚性。同时还造成密封的表面,该表面可防止其它液体,诸如水或油等进入膨胀了的中央部分。 如果要求制出的制件表面光滑且有光泽,那么也可以在其表面上多涂上一些液体状热固性材料。如果这样模压制件是用于代替以前用金属板材制成的部件的话,那么这样做就特别有好处。使用传统的纤维增强塑料很难制出光滑且光泽的表面。 可以用一种常温固化的液状树脂来浸渍基质,然后将其存放起来让树脂在室温下或至少在远低于该热塑料材料软化点的温度下慢慢固化。另一种方法是多孔状的基质先被浸渍涂以凝固较慢的热固性树脂,然后将其快速加热到该热塑性基质的模压温度,再迅速传送到一模压机上。在该热固性树脂的凝固过程完成之前就将其压成要求的形状。 还有一种不同的方法:一种稀疏的多孔状纤维增强热塑性基质被充分浸渍以热固性树脂,再将其加热到该热塑性材料的模压温度并与一张或数张未浸渍的加热了的板材层压到一起,然后在一个热模子中成形。在最后提到的这种工艺方法的一个变形的方法中,再将一张浸渍过的板材加到未浸渍过的板材的另一面,这样在成形后在制件内部就形成一个未浸渍的核心部分。 下面将参照附图对本发明作更详细的说明。 附图中: 图1a是根据本发明的第一种纤维增强塑料结构的一个截面图。 图1b是-由图1a的构造所制成的塑料造形的横切面, 图2a是纤维加固加强热塑料张块的横切面, 图2b是由图2a张块制成的中间制品的横切面, 图2c是根据本发明由图2b的构造所制成的纤维加固塑料制品,又 图2d是由图2c构造所制成的塑料造形。 图1a显示-多孔张块状结构,由玻璃加强纤维2的多孔基体和颗粒状热塑塑料3所组成,而这基体是用一热固树脂4彻底浸渍过的。另一选择是将热固树脂4只加于基体表面,使在固化时,基体核心部分并不沾染热固物质。 可用同时待批的英国专利申请第8400290号(1984年1月6日登记)的过程制造这由纤维2及幼粒热塑物质3所组成的基体。另一制造方法是加入发泡剂、加热、压缩基体,再去掉压力及加热,让物质膨胀,产生出多孔物质。 图1b显示了用图1a所示的浸渍过的板材制成的制件5。为了形成一个制件,先要将板1加热到其中的热塑性材料成份3软化,然后将板1迅速地送入模子,在热固性树脂凝固之前进行模压。在模子温度冷却到足以使该热塑性材料固化后,可将制件从模中取出,从而使热固性材料能在受控制的温度下慢慢凝固。 现在翻到图2。图2a显示了一块包括分布于一实心的热塑性材料基质12中的增强玻纤维11的压实板材10。因为该板材10是经加热加压并在压力下冷却而成形的,所以实心的热塑性材料基质中的纤维增强材料处于受力状态中。 现在翻到图2b,此图显示了经加热后的板10。随着其热塑性 成份变为具有可塑性,它粘合了纤维11,已从受力状态中解脱出来了的纤维11这时就引起整个结构的膨胀并形成一个开放的多孔状基质13。 图2c显示的是图2b中的基质13,该基质是已经用热固性树脂进行浸渍或表面刷涂处理了的。该浸渍过的或表面刷涂过的基质13然后按上面参照附图1a及1b说明的方式被加热并模压成制件15。 板材的纤维成份的纤维长度最好在大约7至50毫米之间。因为这样,在模压过程中,含复合板材的材料就可以自由流动。 第一号实例 使用粉未化的热后成形的热固性树脂,通过在一种液状泡沫中分布下列配料,形成网状并进行干燥处理的方法制备出一件增强板材的样品。 聚丙烯粉(德国标准608E等级)以重量计算60份 生产者:ICI有限公司 玻璃纤维    12毫米长×11微米直径    以重量计算40份 (R18D等级)生产者:O·C·F有限公司 预催化的非饱和聚酯粉(号数3118)以重量计算10份 生产者:Decortone    B·V·公司 该样品被置于一台水压机的模子中,模板加热到170℃,在加热阶段结束、热源已切断时模板合上并向样品施加700磅/寸2的压力,然后在保持压力的同时用循环水对模板进行冷却,在重开模板时,就得到一件成形良好的略有收缩的制件。 为了制出一件控制样品,在不用聚酯添加剂的情况下重复了上述实验,对两种样品各自的制件进行了试验,得到如下结果: 控制    实验 最大弯曲应力MPa    61    50 挠曲模数    MPa    3700    3400 (上述结果意味着获得部分热固性的制件是要以制件损失一些强度为代价的) 第二号实例 用液状热固树脂浸渍 A.物理特性: 如第一号实例中所述,用下列成份制成热固性材料的增强板材样品: 增强材料:玻璃纤维,12毫米长,11微米直径(同实例1中一样)。 基质: 样品1:聚丙烯粉,(PXC81604等级)生产者:ICI有限公司。比例:占重量的52%。 样品2:聚氯乙烯粉(Corvic    S57/116等级) 生产者:ICI有限公司。占重量的70%。 样品3:丙烯酸酯树脂粉(Diakon    LG156等级) 生产者:ICI有限公司。占重量的70%。 该三种样品在一台水压机中被压实成密实的平板状,加热到190℃(对于聚丙乙烯材料)或210℃(对于聚氯乙烯材料)或200℃(对于丙烯酸酯树脂材料),并在加热过程结束时对其施加200-300 磅/寸2的压力,延续5分钟,然后相对不同的样品,模子松开到不同的程度,让样品再次膨胀,胀到不同的厚度和密度,再冷却。 然后对样品1、2和3的控制部分进行挠曲模数和最高抗拉强度试验,其余的则分为两部分,用快速浸入两种不同的液状热固性树脂溶液之一的办法进行浸渍,这两种树脂分别为: 苯甲醛树脂(MS7814等级) 生产者:Ciba-Geigy公司 密胺甲醛树脂(BL434等级) 生产者:B·I·P化学公司。其水溶性浓度可达重量的50%。 这时再将经浸渍的样品送入一台空气循环的烤炉中,用100℃温度烘烤约一小时,再进行冷却并秤量其重量,以确定所得的固体状树脂的重量。然后将其置于一温度在170℃-200℃的平压机上让其凝固。平压机要么仅施加接触压力(以生产仅仅是部分浸渍的材料),要么施加250磅/寸2的压力,这时约费5分钟达到凝固和压实的目的。然后再将这些样品进行冷却并按上述方法进行实验。 附表1总结了试验的结果。结果显示对经膨胀的样品进行浸渍热固性树脂的处理增加了样品的强度和硬性。同时样品在烘烤阶段结束时仍保持足够的热塑性,从而能够在凝固前进行压实。 外观检验显示浸渍得很均匀细致,在热塑性区域和热固性区域之间没有可见的界限。 对表中的样品1A及4也在不同温度下按下列方法进行了硬度试验:将一片放在金属支架上的样品放入一台空气循环烤炉。将温度升到15℃。5分钟后将支架和样品迅速取出烤炉,用一台Shore    Jnstrwment    &:Manufacturing    Co.公司生产的Shore    D仪器 测量样品的硬度。这时将该样品的另一片放在支架上送入烤炉,在好几个更高的温度水平上重复上述过程。 试验结果见表2 表2-第2号实例 说明    温度℃    硬度(S40RE) 10    80 15    75-76 80    62-67 控制=无浸渍    120    57-65 160    31-33 180    6 10    53-65 15    53-59 80    52-55 用苯甲醛树脂浸渍    120    51-53 160    40-48 180    37-40 试验结果表明用热固性树脂液浸渍过的材料能在一个较大的温度变化范围内保持硬度。 同时,浸渍过的材料在更高的温度下已不再膨胀,这显示出热固性添加剂的定形作用。 第3号实例 用热固性树脂浸渍 B.成形性 有种样品是这样制备的:其制备方法同表1中样品中第2号实例 的样品3、4一样,只是有下述差别:在浸渍和干燥后,样品先在一空气烤炉中被初步预热到180℃,然后迅速放入一肘杆式压机的特定形状的被加热到180℃的模具中,再将模具合上,压到约250磅/寸2的压力,保持5分钟,松开压机模具,就得到一件成形良好的略有收缩的制件。 第4号实例 通过从一种热塑性薄膜转换的方法进行液状热固性树脂浸渍。 A    物理特性 有些树脂凝固得太快,难以将其预热到制件的热塑性基质的模压温度。另有些树脂在预热中产生大量刺激性的或可燃性气体。在这种情况下就采用了下面这种改进了的第2号实例中的方法。 按第2号实例的表1中第1、2、3号样品那样制备出的样品在一烤炉中在200℃温度下预热5分钟,或预热到可以看出其厚度发生膨胀而且摸上去变软并有弹性时止。同时将两张单位重量均为300克/米2、厚度为0.26毫米的聚碳酸酯薄膜(Lexan等级)(生产者:通用电器(欧洲)公司)裁到约等于样品大小的尺寸,平摊到一平台上。将一种用B型催化粉剂催化了的非饱和聚酯树脂(C-ristic 198等级)(这两种材料的生产者均为Scott Bader Ltd公司)倒在该两张聚碳酸酯膜上,以形成两片薄薄的胶状物质。 当样品被加热到足够热时,就被迅速取出烤炉,并被置于第一张薄膜上的胶状物质的表面上。这时液状的树脂就立即被吸收入多孔状的膨胀了的表面,起一种较弱的粘结剂的作用。然后将样品的另一面贴到第2张薄膜上的胶状物质表面,得到相同的效果。 将这时的样品重新放入烤炉加热10至20秒即加热到可看出该薄膜已经软化但未熔化和皱缩时止。此时将样品取出烤炉,置于一台水压机的模板上,预热到120℃,然后在接触压力下保持15分钟,最后将其从水压机上取下,冷却并加以试验。下表列出了试验的结果。 表3-第4号实例 样品号    增加的树脂占    挠曲模数MPa    最终抗拉强度MPa 重量的比例% 10A    44    2700    33 9A    50    3100    50 8A    54    3100    53 5A    65    3300    48 4A    73    3200    49 7A    76    2900    41 6A    78    3400    48 读者将会理解,为了协助进行大规模生产,可对上述工艺加以改动。例如,可以在薄膜上涂上一种部分胶化的或高粘度的树脂,然后将薄膜贴到加热了的样品上,而不是相反。 第5号实例 通过从一种热塑性薄膜转换的办法进行液状热固性树脂浸渍。 (B)成形能力 用不同数量的薄膜上的液状树脂胶状物质以第4号实例中那样的方法制备样品。在烤炉中重新加热后,将样品放入一台肘杆式压机的模具中(该特定形状的模具与第三号实例中的模具一样),在130℃温度下压30秒钟,压到250磅/寸2左右的压力,然后取出,轻夹 在一个支架上,再在一台烘炉中在160℃温度下烘烤10分钟以完成凝固过程;于是得到了成形良好的、未变形的且具有牢固粘合的光滑薄膜表面的制件。 根据这个工艺的一种变形工艺,仅在一片薄膜上涂布较小的一块液状树脂的胶化物质。该样品经30秒钟热压后同样地从压机中取出,与前述情况一样,也产生了光滑的粘合良好的表面薄膜,但只是在样品的一面有这种薄膜。 根据这个工艺的另一种变形的工艺,所用的薄膜是定向聚丙烯材料的,在往薄膜上涂布胶状物质之前先喷了一种剥离剂。在成形和冷却之后,该薄膜就被撕去,露出平滑坚硬、无光泽的、部分热固性的表面。 第6号实例 膨胀了的样品在模具中进行液状热固性树脂的包覆。 用下列成份及第1号实例中所述工艺制造增强板材材料的样品: 总单位重量300克/米2 其中 聚丙烯粉(与第2号实例中所述相同)占重量的60%, 玻璃纤维(与第1号实例中相同)占重量的40%, 将样品置于一座空气循环烤炉中在200℃温度下加热约5分钟,即直到可看出其厚度发生膨胀并摸上去变软且有弹性时止。第3号实例中所述的肘杆式压机上的模具被加预热到130℃。样品加热完毕后,将一定数量的不饱和聚酯树脂(与第3号实例中的一样)例入模具的下半部。其数量要能够覆盖模具下半部并达到约500克/米2的单位重量。这时将加热了的样品迅速地从炉中传送入模具。压机压紧 到280磅/寸2左右的压力,保持10分钟。即:直到树脂胶化凝固到足以使样品能完整地取出时止。 然后将样品轻轻夹在一个支架上,送入一个烘炉,让其在140℃温度下烘烤一段足够长的时间,使其达到完全凝固。 可以看出所得的样品的下半部的表面被树脂均匀地浸透,产生了一个坚硬平滑的热固性表面。亦可看到一部分树脂渗到了制件的另一面,并产生了相似的效果。 根据这个工艺的一种变形工艺,样品由两片单位重量均为1500克/米2的材料热压到一起,产生了一张两层的复合板材,每层的成份不同。上层:占重量25%的玻纤及占重量75%的聚丙烯。下层:占重量48%的玻纤及占重量52%的聚丙烯。 可以看到下层的厚度膨胀较上层大得多。(恰如根据1984年1月6日一起提出的英国专利申请号第8400293中所预料的)下层仅产生了很小的膨胀。 对于模具的上部(与样品的上层接触)进行了改进以便包括更复杂的拱肋及支柱的部件,并将模具装在一台能够对制件的平面施加接近1500磅/寸2的水压机上。 从压机中取出制件时可看到其底部表面得到了均匀的浸涂。仅有很少一部分树脂渗透到上层的表面。然而,上层的表面精确地复制了模具的细部形状。 可以被理解的是对于凝固时间的选择将取决于用于浸渍的树脂的类型。用这种方法可能得到短的多的凝固时间。 而且,液状树脂也可能由粉状树脂取代,用以进行已知的工艺中的模内涂覆,如果要求这样做的话。 无论是这种情况中的那种,热膨胀板材的微孔结构使得可以做到均匀彻底的渗透,以保证涂覆层的良好的粘合性,并让制件具有热固性材料的特性。