首页 / 分析物检测

分析物检测实质审查 发明

技术内容

分析物检测 [0001] 本申请要求2020年1月29日递交的美国临时专利申请序列号62/967,433的优先 权,其通过参考以其全部结合至本文中。 [0002] 关于联邦资助研究或开发的声明 本发明为在美国国立卫生研究院(National Institutes of Health)授予的 CA204560和CA229023下于政府支持下完成。政府对本发明享有一定权利。 [0003] 领域 本文提供与分析物检测相关的技术,并且特别地但不排他地,涉及用于使用分子 探针检测、表征、鉴定和/或量化分析物(例如核酸、蛋白或其他生物分子)的组合物、方法、系统和试剂盒,所述分子探针整合探针与同一分析物分子的累积重复结合。 [0004] 背景 分析物(例如包括但不限于生物分子(例如蛋白、核酸和脂质)和小分子(例如药 物、代谢物、辅因子等))的灵敏性和特异性检测在生物医学研究、体外诊断和临床医学中起重要作用。分析物检测通常使用分子试剂(例如抗体、杂交探针等)来进行,所述分子试剂对感兴趣的分析物具有高度亲和力和特异性,并且仅在存在目标分析物的情况下产生可检测 信号。然而,亲和探针对目标分析物具有有限的特异性和亲和力(参见例如Zhang等人 (2012) “Optimizing the specificity of nucleic acid hybridization. Nat.  Chem.4, 208‑14),因此使得以高置信度检测某些分析物具有挑战性。这对于以微乎其微的浓度(例如以亚飞摩尔浓度)存在的感兴趣的生物标志物而言是重大的问题(参见例如Lee 等人(2001) “Quantitation of genomic DNA in plasma and serum samples: higher  concentrations of genomic DNA found in serum than in plasma.” Transfusion  (Paris)41: 276‑82;Mitchell等人(2008) “Circulating microRNAs as stable blood‑based markers for cancer detection” Proc. Natl. Acad. Sci. U. S. A.105:  10513‑18;Bettegowda等人(2014) “Detection of Circulating Tumor DNA in Early‑ and Late‑Stage Human Malignancies” Sci. Transl. Med.6: 224ra24‑224ra24;Husain等人(2017) “Monitoring Daily Dynamics of Early Tumor Response to Targeted  Therapy by Detecting Circulating Tumor DNA in Urine” Clin. Cancer Res.23:  4716‑23)。 [0005] 尽管可通过产生分析物的许多拷贝(例如通过PCR和其他核酸扩增技术)、放大信 号或使用长测定和观察时间记录信号来提高灵敏度,但分析物检测技术将通过提供检测限 降低的终点检测技术来进行改进。 [0006] 概述 因此,本文提供用于使用整合探针与同一分析物分子的累积重复结合的分子探针 来检测分析物的技术。在一些实施方案中,该技术类似于用平衡泊松采样(Equilibrium  Poisson Sampling) (SiMREPS)的单分子识别。参见例如美国专利申请序列号14/589,467; 和Johnson‑Buck等人(2016) “Kinetic fingerprinting to identify and count single nucleic acids” Nature Biotechnology 33: 790,所述内容的每一个都通过参考以其全 部结合至本文中。 [0007] 然而,本文所述技术与SiMREPS的不同之处在于一个探针的重复结合(例如如本文 所述的“计数器”探针,其与SiMREPS“查询器”探针类似)导致多个标签积累在记录重复结合的另一个探针(“积分器”探针)上。分析物的存在由一种或多种包含多个(例如多于一个)附接于其上的标签的积分器探针的存在来指示。因此,在本技术中计数器探针与分析物的重 复结合不一定被实时观察到,而是通过附接于每个积分器探针的标签数量来检测(例如使 用终点测量),例如以单分子水平(例如使用荧光显微术)或使用批量方法(例如电泳、色谱 或质谱)。 [0008] 因此,在一些实施方案中,该技术提供改进的(例如加速的)和更简单的数据获取 和/或数据分析,因为本技术的实施方案可使用终点测量而不是作为时间依赖性的实时信 号来获取数据。然而,该技术不限于使用终点检测,并且一些实施方案包括使用实时测量,例如以记录信号和/或时间依赖性信号。在一些实施方案中,本技术提供比一些现有(例如 实时(例如SiMREPS))技术更低的检测限,例如通过检测样品中相对于现有(例如实时(例如 SiMREPS))技术大得多的部分的分析物。本文所述技术可用于例如诊断、研究和临床医学,并且在一些实施方案中,提高靶向治疗中分子识别的准确性。 [0009] 因此,本文提供用于检测样品中分析物的组合物的实施方案。例如,在一些实施方案中,该技术提供包含以下的组合物:对分析物具有特异性的积分器探针;和对分析物具有特异性并含有标签的计数器探针,其中当积分器探针和计数器探针两者均与分析物结合 时,标签从计数器探针不可逆地(例如基本上或有效地不可逆地)转移至积分器探针。在一 些实施方案中,积分器探针稳定地结合分析物。在一些实施方案中,计数器探针瞬时结合分析物。在一些实施方案中,积分器探针被配置为结合多于一个标签(例如2、3、4、5、6、7、8、9、 10、11、12、13、14、15、16、17、18、19或20或更多个标签)。因此,在一些实施方案中,组合物包含含有多个标签(例如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20或更多个标签)的积分器探针。在一些实施方案中,如本文所述的组合物进一步包含分析物。在一些实施方案中,积分器探针被配置为非共价地(例如不可逆地、基本上不可逆地和/或有效地 不可逆地非共价地)结合标签。在一些实施方案中,积分器探针被配置为共价地(例如不可 逆地、基本上不可逆地和/或有效地不可逆地共价地)结合标签。在一些实施方案中,分析物包含核酸、蛋白、代谢物、小分子、脂质或糖。在一些特定实施方案中,积分器探针包含核酸或蛋白(例如抗体)或者核酸和蛋白两者。在一些实施方案中,计数器探针包含核酸或蛋白 (例如抗体)或者核酸和蛋白两者。在一些实施方案中,标签为荧光或发光标签。在一些实施方案中,该组合物进一步包含计数器探针释放组分,其将结合于分析物的计数器探针转化 为解离的计数器探针。在一些实施方案中,计数器探针释放组分包含对计数器探针‑分析物复合物具有特异性的酶。在一些实施方案中,积分器探针包含第一官能团而计数器探针的 标签包含与第一官能团选择性反应的第二官能团。在一些实施方案中,积分器探针包含第 一点击反应物而计数器探针的标签包含第二点击反应物。在一些实施方案中,积分器探针 包含第一亲和配体而计数器探针的标签包含选择性结合第一亲和配体的第二亲和配体。在 一些实施方案中,积分器探针包含第一核酸序列而计数器探针的标签包含与第一核酸序列 互补的第二核酸序列。在一些实施方案中,标签从计数器探针向整合器探针的转移经黏性 末端(toehold)介导的链置换而发生。在一些实施方案中,积分器探针包含共有目标氨基酸或核酸序列,而计数器探针的标签包含酶促转移至共有目标序列的配体。在一些实施方案 中,积分器探针包含在计数器探针与分析物结合时计数器探针的标签被选择性地分配至其 中的单独的固相或液相(例如胶体颗粒、液包液乳液的液滴或水性两相系统的相)。 [0010] 在另一个实施例中,在一些实施方案中,该技术提供包含以下的组合物:能够与分析物稳定缔合的积分器探针;和含有标签并且能够与分析物直接或间接缔合的计数器探 针,其中当计数器探针和积分器探针两者均与分析物缔合时,标签从计数器探针向积分器 探针的不可逆的转移比当计数器探针和/或积分器探针与分析物解离时发生得更快速和/ 或更有效。在一些实施方案中,该组合物进一步包含能够与分析物结合的适配器探针,并且其中计数器探针通过与适配器探针直接缔合而与分析物间接缔合。在一些实施方案中,计 数器探针对分析物具有特异性并与分析物直接缔合。在一些实施方案中,积分器探针对分 析物具有特异性。在一些实施方案中,计数器探针瞬时结合分析物。在一些实施方案中,计数器探针瞬时结合适配器探针。在一些实施方案中,积分器探针被配置为结合多于一个标 签。在一些实施方案中,该组合物包含含有多个标签的积分器探针。在一些实施方案中,该组合物进一步包含分析物。在一些实施方案中,积分器探针被配置为非共价地结合标签。在一些实施方案中,积分器探针被配置为共价地结合标签。在一些实施方案中,分析物包含核酸、蛋白、代谢物、小分子、脂质或糖。在一些实施方案中,积分器探针包含单独的物质相。在一些实施方案中,单独的物质相为胶体颗粒、脂质体、胶束或乳化液滴。例如,在一些实施方案中,液滴或颗粒包含分析物(例如分析物被捕获在液滴或颗粒上/内部),并且计数器探针与分析物的结合导致标签转移至液滴或颗粒上。在一些实施方案中,积分器探针包含核酸 或蛋白。在一些实施方案中,计数器探针包含核酸或蛋白。在一些实施方案中,标签为荧光或发光标签。在一些实施方案中,该组合物进一步包含计数器探针释放组分,其将结合于分析物的计数器探针转化为解离的计数器探针。在一些实施方案中,计数器探针释放组分包 含对计数器探针‑分析物复合物具有特异性的酶。在一些实施方案中,积分器探针包含第一官能团而计数器探针的标签包含与第一官能团具有反应性的第二官能团。在一些实施方案 中,积分器探针包含第一点击反应物而计数器探针的标签包含第二点击反应物。 [0011] 此外,在一些实施方案中,该技术提供用于检测样品中分析物的系统。例如,在一些实施方案中,系统包含对分析物具有特异性的积分器探针;和对分析物具有特异性并含 有标签的计数器探针,其中当积分器探针和计数器探针两者均与分析物结合时,标签从计 数器探针不可逆地(例如基本上或有效地不可逆地)转移至积分器探针。在一些实施方案 中,积分器探针稳定地结合分析物。在一些实施方案中,计数器探针瞬时结合分析物。在一些实施方案中,积分器探针被配置为结合多于一个标签(例如2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19或20或更多个标签)。在一些实施方案中,系统进一步包含分析物。 在一些实施方案中,分析物包含核酸、蛋白、代谢物、小分子、脂质或糖。在一些实施方案中,积分器探针包含核酸或蛋白(例如抗体)或者核酸和蛋白两者。在一些实施方案中,标签为 荧光或发光标签。在一些实施方案中,系统进一步包括被配置为检测和/或量化由包含多个标签的积分器探针产生的信号(例如荧光信号、质量信号、电荷信号)的检测组件。在一些实施方案中,系统包括微处理器(例如计算机)。在一些实施方案中,系统包括软件组件,其被配置为记录由积分器探针产生的信号,被配置为使用由积分器探针产生的信号检测和/或 量化样品中分析物的存在,和/或被配置为产生包含描述样品中分析物的存在和/或数量 (例如量和/或浓度)的定性和/或定量值的输出。在一些实施方案中,积分器探针包含第一 官能团而计数器探针的标签包含与第一官能团选择性反应的第二官能团。在一些实施方案 中,积分器探针包含第一点击反应物而计数器探针的标签包含第二点击反应物。在一些实 施方案中,积分器探针包含第一亲和配体而计数器探针的标签包含选择性结合第一亲和配 体的第二亲和配体。在一些实施方案中,积分器探针包含第一核酸序列而计数器探针的标 签包含与第一核酸序列互补的第二核酸序列。在一些实施方案中,标签从计数器探针向整 合器探针的转移经黏性末端介导的链置换而发生。在一些实施方案中,积分器探针包含共 有目标氨基酸或核酸序列而计数器探针的标签包含酶促转移至共有目标序列的配体。在一 些实施方案中,系统进一步包含计数器探针释放组分,其将结合于分析物的计数器探针转 化为解离的计数器探针。在一些实施方案中,计数器探针释放组分包含对计数器探针‑分析物复合物具有特异性的酶。在一些实施方案中,积分器探针包含在计数器探针与分析物结 合时计数器探针的标签被选择性地分配至其中的单独的固相或液相(例如胶体颗粒、液包 液乳液的液滴或水性两相系统的相)。 [0012] 在另外的实施方案中,该技术提供包含以下的系统:能够与分析物稳定缔合的积 分器探针;和含有标签并且能够与分析物直接或间接缔合的计数器探针,其中当计数器探 针和积分器探针两者均与分析物缔合时,标签从计数器探针向积分器探针的不可逆的转移 比当计数器探针和/或积分器探针与分析物解离时发生得更快速和/或更有效。在一些实施 方案中,该系统进一步包含能够与分析物结合的适配器探针,并且其中计数器探针通过与 适配器探针直接缔合而与分析物间接缔合。在一些实施方案中,计数器探针对分析物具有 特异性并与分析物直接缔合。在一些实施方案中,积分器探针对分析物具有特异性。在一些实施方案中,计数器探针瞬时结合分析物。在一些实施方案中,计数器探针瞬时结合适配器探针。在一些实施方案中,积分器探针被配置为结合多于一个标签。在一些实施方案中,该系统包含含有多个标签的积分器探针。在一些实施方案中,该系统进一步包含分析物。在一些实施方案中,积分器探针被配置为非共价地结合标签。在一些实施方案中,积分器探针被配置为共价地结合标签。在一些实施方案中,分析物包含核酸、蛋白、代谢物、小分子、脂质或糖。在一些实施方案中,积分器探针包含单独的物质相。在一些实施方案中,单独的物质相为胶体颗粒、脂质体、胶束或乳化液滴。在一些实施方案中,积分器探针包含核酸或蛋白。 在一些实施方案中,计数器探针包含核酸或蛋白。在一些实施方案中,标签为荧光或发光标签。在一些实施方案中,该系统进一步包含计数器探针释放组分,其将结合于分析物的计数器探针转化为解离的计数器探针。在一些实施方案中,计数器探针释放组分包含对计数器 探针‑分析物复合物具有特异性的酶。在一些实施方案中,积分器探针包含第一官能团而计数器探针的标签包含与第一官能团具有反应性的第二官能团。在一些实施方案中,积分器 探针包含第一点击反应物而计数器探针的标签包含第二点击反应物。在一些实施方案中, 系统进一步包括被配置为检测和/或量化由包含多个标签的积分器探针产生的信号的检测 组件。 [0013] 在一些实施方案中,该技术涉及用于检测和/或量化分析物的方法。例如,在一些 实施方案中,方法包括提供包含分析物的样品;提供对分析物具有特异性的积分器探针;以及提供对分析物具有特异性并包含标签的计数器探针。在一些实施方案中,当积分器探针 和计数器探针两者均与分析物结合时,标签从计数器探针不可逆地(例如基本上或有效地 不可逆地)转移至积分器探针。在一些实施方案中,积分器探针稳定地结合分析物。在一些实施方案中,计数器探针瞬时结合分析物。在一些实施方案中,积分器探针被配置为结合多于一个标签(例如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20或更多个标签)。在一些实施方案中,积分器探针被配置为非共价地(例如不可逆地、基本上不可逆地 和/或有效地不可逆地非共价地)结合标签。在一些实施方案中,积分器探针被配置为共价 地(例如不可逆地、基本上不可逆地和/或有效地不可逆地共价地)结合标签。在一些实施方案中,分析物包含核酸、蛋白、代谢物、小分子、脂质或糖。在一些实施方案中,积分器探针包含核酸或蛋白(例如抗体)或者核酸和蛋白两者。在一些实施方案中,计数器探针包含核酸 或蛋白(例如抗体)或者核酸和蛋白两者。在一些实施方案中,标签为荧光或发光标签。在一些实施方案中,方法进一步包括提供计数器探针释放组分,其将结合于分析物的计数器探 针转化为解离的计数器探针。在一些实施方案中,计数器探针释放组分包含对计数器探针‑分析物复合物具有特异性的酶。在一些实施方案中,积分器探针包含第一官能团而计数器 探针的标签包含与第一官能团选择性反应的第二官能团。在一些实施方案中,积分器探针 包含第一点击反应物而计数器探针的标签包含第二点击反应物。在一些实施方案中,积分 器探针包含第一亲和配体而计数器探针的标签包含选择性结合第一亲和配体的第二亲和 配体。在一些实施方案中,积分器探针包含第一核酸序列而计数器探针的标签包含与第一 核酸序列互补的第二核酸序列。在一些实施方案中,标签从计数器探针向整合器探针的转 移经黏性末端介导的链置换而发生。在一些实施方案中,积分器探针包含共有目标氨基酸 或核酸序列,而计数器探针的标签包含酶促转移至共有目标序列的配体。在一些实施方案 中,积分器探针包含在计数器探针与分析物结合时计数器探针的标签被选择性地分配至其 中的单独的固相或液相(例如胶体颗粒、液包液乳液的液滴或水性两相系统的相)。在一些 实施方案中,分析物为疾病的生物标志物。在一些实施方案中,分析物为癌症的生物标志 物。在一些实施方案中,样品为生物流体。在一些实施方案中,样品包含和/或制备自血液、尿液、粘液、唾液、精液或组织。在一些实施方案中,检测和/或量化样品中的分析物表明受试者患有疾病。在一些实施方案中,方法进一步包括提供描述样品中分析物的存在和/或数量的结果。在一些实施方案中,方法进一步包括提供阳性对照和/或阴性对照。在一些实施方案中,方法进一步包括提供标准曲线。 [0014] 另外的实施方案提供包括提供包含分析物的样品;提供能够与分析物稳定缔合的 积分器探针;以及提供包含标签并且能够与分析物直接或间接缔合的计数器探针。在一些 实施方案中,当计数器探针和积分器探针两者均与分析物缔合时,标签从计数器探针向积 分器探针的不可逆的转移比当计数器探针和/或积分器探针与分析物解离时发生得更快速 和/或更有效。在一些实施方案中,方法进一步包括提供能够与分析物结合的适配器探针,并且其中计数器探针通过与适配器探针直接缔合而与分析物间接缔合。在一些实施方案 中,计数器探针对分析物具有特异性并与分析物直接缔合。在一些实施方案中,积分器探针对分析物具有特异性。在一些实施方案中,计数器探针瞬时结合分析物。在一些实施方案 中,计数器探针瞬时结合适配器探针。在一些实施方案中,积分器探针被配置为结合多于一个标签。在一些实施方案中,积分器探针被配置为非共价地结合标签。在一些实施方案中,积分器探针被配置为共价地结合标签。在一些实施方案中,分析物包含核酸、蛋白、代谢物、小分子、脂质或糖。在一些实施方案中,积分器探针包含单独的物质相。在一些实施方案中,单独的物质相为胶体颗粒、脂质体、胶束或乳化液滴。在一些实施方案中,积分器探针包含核酸或蛋白。在一些实施方案中,计数器探针包含核酸或蛋白。在一些实施方案中,标签为荧光或发光标签。在一些实施方案中,方法进一步包括提供计数器探针释放组分,其将结合于分析物的计数器探针转化为解离的计数器探针。在一些实施方案中,计数器探针释放组 分包含对计数器探针‑分析物复合物具有特异性的酶。在一些实施方案中,积分器探针包含第一官能团而计数器探针的标签包含与第一官能团具有反应性的第二官能团。在一些实施 方案中,积分器探针包含第一点击反应物而计数器探针的标签包含第二点击反应物。在一 些实施方案中,分析物为疾病的生物标志物和/或癌症的生物标志物。在一些实施方案中,样品为生物流体。在一些实施方案中,样品包含和/或制备自血液、尿液、粘液、唾液、精液或组织。在一些实施方案中,检测和/或量化样品中的分析物表明受试者患有疾病。在一些实施方案中,方法进一步包括提供描述样品中分析物的存在和/或数量的结果。在一些实施方案中,方法进一步包括提供阳性对照和/或阴性对照。在一些实施方案中,方法进一步包括提供标准曲线。 [0015] 在一些实施方案中,该技术涉及使用如本文所述的组合物来检测和/或量化样品 中的分析物。在一些实施方案中,该技术涉及使用如本文所述的系统来检测和/或量化样品中的分析物。 [0016] 基于本文包含的教导,另外的实施方案对于相关领域的技术人员而言将为显而易 见的。 [0017] 附图简述 参考以下附图将使得本技术的这些和其他特征、方面和优势得到更好的理解: 图1为显示本文所提供技术的原理的示意图。积分器探针(I)与目标分析物(A)稳 定结合,并且计数器探针(T)与A的同一拷贝的重复结合触发标签L (黄星)从T转移至I。最 初,I不包含标签并被指定为I0。在T与A结合的多次循环之后,I被N≥ 2个标签修饰并被指定为IN。在存在虚假分析物(A*)的情况下,T和/或I与A*的结合是弱的,并且因此标签从T转移至I比存在A的情况下慢得多。在I的给定拷贝上存在多个(例如多于2个)标签提供表明混 合物中A的存在和/或数量的特定特征。 [0018] 图2为显示使用无铜点击化学和RNase H检测核酸分析物的技术的具体示例性实 施方案的示意图。积分器探针I包含多个四嗪(Tz,橙色六边形)部分并通过Watson‑Crick碱基配对与A稳定结合。计数器探针T包含单个反式环辛烯(TCO,绿色八边形)部分并与A瞬时 结合,因为T包含在与A结合之后由RNase H选择性降解的一系列与A互补的RNA核苷酸。由于当I和T与A的同一拷贝结合时TCO和Tz标签的局部有效浓度高,因此在发生通过RNase H的 降解之前会发生共价连接T和I的点击反应。在RNase H部分降解T的结合拷贝之后,T与A之 间的互补碱基对数量减少,并且T的新拷贝与A杂交。在多次结合、点击反应和降解循环之 后,部分降解的T(包含标签L)的多个拷贝共价附接于I的相关拷贝,保留对A的同一拷贝发 生多个结合事件的永久记忆。多重标记积分器探针的存在提供表明混合物中A的存在和/或 数量的特定特征,这可通过检测器比如变性聚丙烯酰胺电泳(PAGE)、荧光显微术、质谱和/或色谱进行检测。该系统的其他实施方案利用T探针,其主要包含RNA核苷酸(左下)和/或缀合于对其他类型分析物(比如蛋白)具有特异性的亲和探针。 [0019] 图3为染色变性聚丙烯酰胺凝胶,显示其中使用包含至多3个TCO拷贝的积分器探 针和包含甲基四嗪的计数器探针在41个核苷酸的突变体核酸(MUT)中检测点突变的实验结 果。未检测到缺少点突变的相应野生型(WT)序列,表明该测定对点突变的选择性。 [0020] 图4显示来自其中通过单分子全内反射荧光(TIRF)显微术检测分析物DNA序列存 在的实验的数据。 [0021] 应当理解,附图不一定为按比例绘制,附图中的对象也不一定为相对于彼此按比 例绘制。附图为预期使本文公开的装置、系统和方法的各种实施方案清楚和理解的描绘。在可能的情况下,将在整个附图中使用相同的参考编号来指代相同或相似的部分。此外,应当意识到,附图并不预期以任何方式限制本教导的范围。 [0022] 详述 本文提供与分析物检测相关的技术,并且特别地但不排他地,涉及上述用于使用 整合探针(例如计数器探针)与同一分析物分子的累积重复结合的分子探针(例如积分器探 针)检测、表征、鉴定和/或量化分析物(例如核酸、蛋白或其他生物分子)的组合物、方法、系统、试剂盒和用途。在该技术实施方案的开发期间,进行了实验以开发和测试用于使用经无铜点击化学附接于积分器探针并在凝胶电泳后通过荧光染色可视化的标签来检测DNA点突 变的系统。在一些实施方案中,使用单分子方法或其他检测方法检测包含多个标签的积分 器探针。标签可为任何可检测的分子部分,比如荧光团、DNA序列、亲和标签、质量标签、酶、半抗原、蛋白标签等,并且可共价或非共价地附接于积分器探针。积分器探针可为例如寡核苷酸、多肽、胶体纳米颗粒或包含多个液相的系统内的单独相,具有在计数器探针与同一分析物分子重复结合时接受多个(例如至少两个)标签拷贝的能力。 [0023] 在各种实施方案的该详细描述中,出于解释的目的,阐述了许多具体细节以提供 对所公开的实施方案的透彻理解。然而,本领域的技术人员将意识到,可用或不用这些具体细节来实践这些不同的实施方案。在其他情况下,结构和设备以框图的形式显示。此外,本领域的技术人员可易于意识到,方法得以在其中呈现和实施的特定序列为说明性的,并且 据考虑,序列可以变化并且仍然保持在本文公开的各种实施方案的精神和范围内。 [0024] 本申请中引用的所有文献和类似材料,包括但不限于专利、专利申请、文章、书籍、论文和互联网网页明确地通过参考以其全部结合,以用于任何目的。除非另外定义,否则本文使用的所有技术和科学术语均具有与本文描述的各种实施方案所属领域的普通技术人 员通常理解的相同含义。当结合的参考文献中的术语定义似乎与本教导中提供的定义不同 时,应以本教导中提供的定义为准。本文使用的章节标题为出于组织目的,并且将不被解释为以任何方式限制所描述的主题。 [0025] 定义 为促进对本技术的理解,以下定义一些术语和短语。另外的定义在整个详细描述 中进行阐述。 [0026] 在整个说明书和权利要求中,除非上下文另外明确规定,否则以下术语采取与本 文明确相关的含义。如本文所使用的短语“在一个实施方案中”不一定指相同的实施方案,尽管其可为相同的。此外,如本文所使用的短语“在另一个实施方案中”不一定指不同的实施方案,尽管其可为不同的。因此,如下所述,本发明的各种实施方案可容易地进行组合而不背离本发明的范围或精神。 [0027] 另外,如本文所使用的,术语“或”为包含性“或”运算符并且等同于术语“和/或”,除非上下文另外明确规定。术语“基于”不是排他性的,并且允许基于未描述的另外因素,除非上下文另外明确规定。另外,在整个说明书中,“一(a)”、“一种(an)”和“该(the)”的含义包括复数指涉。“在…中(in)”的含义包括“在…中(in)”和“在…上(on)”。 [0028] 如本文所使用的,术语“约(about)”、“大约(approximately)”、“基本上”和“显著地”为本领域普通技术人员理解的,并且将在某种程度上基于其中使用它们的上下文而变 化。例如,如本文所使用的术语“基本上”为广泛的术语并且以其通常的含义使用,所述通常的含义包括但不限于在很大程度上但不一定完全是所指定的。如果这些术语的使用对于本 领域的普通技术人员而言鉴于其中使用它们的上下文为不清楚的,则“约”和“大约”意指正负小于或等于特定术语的10%以及“基本上”和“显著地”意指正负大于特定术语的10%。 [0029] 如本文所使用的,范围的公开包括整个范围内的所有值和进一步划分的范围的公 开,包括对范围给出的端点和子范围。 [0030] 如本文所使用的,后缀“无…(‑free)”是指删去了附加“无…(‑free)”的词语的基本词根的特征的技术实施方案。也就是说,如本文所使用的术语“无X (X‑free)”意指“没有X (without X)”,其中X为“无X (X‑free)”技术中删去的技术特征。例如,“无钙”组合物不包含钙,“无混合”方法不包括混合步骤等。 [0031] 尽管术语“第一”、“第二”、“第三”等在本文中可被用于描述各种步骤、元件、组合物、组分、区域、层和/或部分,但这些步骤、元件、组合物、组分、区域、层和/或部分不应受这些术语的限制,除非另外指明。这些术语被用于区分一个步骤、元件、组合物、组分、区域、层和/或部分与另一个步骤、元件、组合物、组分、区域、层和/或部分。术语比如“第一”、“第二”以及本文中使用的其他数字术语并不意指次序或顺序,除非上下文另外明确指明。因此,本文中讨论的第一步骤、元件、组合物、组分、区域、层或部分在不背离技术的情况下可称被为第二步骤、元件、组合物、组分、区域、层或部分。 [0032] 如本文所使用的,词语“存在(presence)”或“不存在(absence)”(或者“存在 (present)”或“不存在(absent)”)在相对含义上被用于描述特定实体(例如分析物)的量或水平。例如,当分析物被称为“存在”于测试样品中时,这意指分析物的水平或量高于预先确定的阈值;相反地,当分析物被称为“不存在”于测试样品中时,这意指分析物的水平或量低于预先确定阈值。预先确定阈值可为与用于检测分析物的特定测试相关的可检测阈值或任 何其他阈值。当在样品中“检测到”分析物时,其在样品中“存在”;当“未检测到”分析物时,其在样品中“不存在”。进一步地,其中“检测到”分析物或其中“存在”分析物的样品为分析物“阳性”的样品。其中“未检测到”分析物或其中“不存在”分析物的样品为分析物“阴性”的样品。 [0033] 如本文所使用的,术语“检测”是指检测分析物或者分析物的活性或作用存在或不存在,或者用于检测分析物变体存在或不存在。 [0034] 如本文所使用的,术语“检测测定”是指用于检测分析物或者分析物的活性或作用存在或不存在或者用于检测分析物变体存在或不存在的测定。 [0035] 如本文所使用的,术语“分析物”是指待测试、测定、检测、成像、表征、描述和/或量化的物质。示例性的分析物包括但不限于分子、原子、离子、生物分子(例如如本文所述和定义的核酸(例如DNA、RNA))、多肽(例如肽、蛋白、糖蛋白)、碳水化合物、脂质、氨基酸、小分子(药物、生物活性剂、毒素、辅因子、代谢物)等。 [0036] 如本文所使用的,“增加”或“减少”分别指变量值相对于先前测量的变量值、相对于预先确定的值和/或相对于标准对照值的可检测的(例如测量的)正向或负向变化。增加 为相对于先前测量的变量值、预先确定的值和/或标准对照值的正向变化,其优选地为至少 10%,更优选地为50%,仍然更优选地为2倍,甚至更优选地为至少5倍,和最优选地为至少10倍。类似的,减少为负向变化,其优选地为先前测量的变量值、预先确定的值和/或标准对照值的至少10%,更优选地为50%,仍然更优选为至少80%,和最优选地为至少90%。其他表示数量变化或差异的术语,比如“更多”或“更少”,在本文中以与如上所述相同的方式使用。 [0037] 如本文所使用的,“系统”是指为共同目的一起操作的多个真实和/或抽象的组件。 在一些实施方案中,“系统”为硬件和/或软件组件的集成组装。在一些实施方案中,该系统的每个组件与一个或多个其他组件相互作用和/或与一个或多个其他组件相关。在一些实 施方案中,系统是指用于控制和指导方法的组件和软件的组合。 [0038] 如本文所使用的,术语“样品”在其最广泛的含义上进行使用。在一些实施方案中,样品为动物细胞或组织或包含动物细胞或组织。在一些实施方案中,样品包括从任何来源 获得的样本或培养物(例如微生物培养物)以及生物和环境样品。生物样品可从植物或动物 (包括人类)获得,并且包括流体、固体、组织和气体。环境样品包括例如环境材料,比如表面物质、土壤、水和工业样品,以及从食品和乳品加工仪器、装置、设备、器具、一次性物品和非一次性物品获得的样品。这些实例不应解释为限制适用于本技术的样本类型。 [0039] 如本文所使用的,“生物样品”是指生物组织或流体的样品。例如,生物样品可为从动物(包括人类)获得的样品;流体、固体或组织样品;以及液体和固体食品和饲料产品及配料,比如乳制品、蔬菜、肉类和肉类副产品以及废物。生物样品可获得自任何各种家养动物科以及野性或野生动物,包括但不限于比如有蹄类动物、熊、鱼、兔形目动物、啮齿动物等动物。生物样品的实例包括组织切片、血液、血液级分、血浆、血清、尿液或者来自其他外周来源或细胞培养物、细胞集落、单细胞或单细胞集合的样品。此外,生物样品包括上述样品的集合或混合物。生物样品可通过从受试者体内取出细胞样品来提供,但也可通过使用先前 分离的样品来提供。例如,可通过常规活检技术从怀疑患有疾病的受试者体内取出组织样 品。在一些实施方案中,血液样品取自受试者。来自患者的生物样品意指来自怀疑受疾病影响的受试者的样品。 [0040] 如本文使用的术语“生物流体”是指生物的流体(例如体液(body fluid)、体液 (bodily fluid))。例如,在一些实施方案中,生物流体为排泄物(例如尿液、汗液、渗出液(例如包括植物渗出液)),并且在一些实施方案中生物流体为分泌物(例如母乳、胆汁)。在一些实施方案中,生物流体使用针获得(例如血液、脑脊液、淋巴液)。在一些实施方案中,生物流体作为病理过程的结果产生(例如水疱、囊肿液)。在一些实施方案中,生物流体源于另一种生物流体(例如血浆、血清)。示例性的生物流体包括但不限于羊水、房水、玻璃体液、胆汁、血液、血浆、血清、母乳、脑脊液、耵聍(耳垢)、乳糜、食糜、内淋巴、外淋巴、渗出液、粪便、女性射精、胃酸、胃液、淋巴液、粘液(例如鼻腔引流液、痰)、心包液、腹膜液、胸膜液、脓液、稀粘液、唾液、皮脂(例如皮肤油)、浆液、精液、阴垢、痰液、滑液、汗液、泪液、尿液、阴道分泌物和呕吐物。 [0041] 如本文所使用的术语“标签”是指可被用于提供可检测(例如可量化)的效应并且 可附接于积分器探针并转移至计数器探针(例如带有或不带有计数器探针的一部分和/或 接头或其部分)的任何原子、分子、分子复合物(例如金属螯合物)或胶体颗粒(例如量子点、纳米颗粒、微米颗粒等)。标签为适合于至少一种允许不同标签之间的区分的检测和/或分 离方法的化合物、结构或元件。可用于本文提供的技术的示例性标签包括例如染料、荧光标签、化学发光标签、猝灭剂、放射性标签或其组合。标签包括致发光和/或发光分子、有色分子(例如色原)和闪烁剂。标签还包括任何有用的接头分子(比如生物素、亲和素、地高辛、链 2+ 霉亲和素、HRP、蛋白A、蛋白G、抗体或其片段、Grb2、多聚组氨酸、Ni 、FLAG标签、myc标签)、重金属(例如金)、酶(例如碱性磷酸酶、过氧化物酶和荧光素酶)、电子供体/受体、吖啶酯和量热底物。还设想质量变化可被认为是可检测的标签,例如如在表面等离子共振检测或质 谱法中发现的那样。标签可提供可通过荧光、发光、放射性、比色法、重量分析法、X射线衍射或吸收、磁性、酶活性、质量特性或受质量影响的行为(例如质谱法;荧光偏振)等检测的信号。标签可为荷电部分(正电荷或负电荷),或者可为电荷中性的。标签可包括核酸或蛋白序列或由其组成,只要包含标签的序列为可检测的。在一些实施方案中,标签为荧光标签(例如荧光团)。 [0042] 如本文所使用的,术语“荧光团”应被理解为是指荧光团和发光团以及淬灭荧光或发光发射的化学试剂。进一步地,如本文所使用的,“荧光团”是指在适当刺激时具有荧光特性的任何种类。引发荧光的刺激一般为光照;然而,本文也考虑其他类型的刺激(例如碰 撞)。术语“荧光团”、“荧光体”、“荧光部分”、“荧光染料”和“荧光基团”可互换使用。在一些实施方案中,荧光标签包括如以下在标题为“荧光标签”的章节中所述的荧光团。 [0043] 如本文所使用的,“核酸”或“核酸序列”是指嘧啶和/或嘌呤碱基(优选地分别为胞嘧啶、胸腺嘧啶和尿嘧啶,以及腺嘌呤和鸟嘌呤)的聚合物或寡聚物(参见Albert L.  Lehninger, Principles of Biochemistry, at 793‑800 (Worth Pub. 1982))。本技术考虑任何脱氧核糖核苷酸、核糖核苷酸或肽核酸组分及其任何化学变体,比如这些碱基的甲 基化、羟甲基化或糖基化形式等。聚合物或寡聚物在组成上可为异质或均质的,并且可从天然存在的来源中分离或者可人工或合成地产生。另外,核酸可为DNA或RNA或其混合物,并且可以单链或双链形式(包括同源双链、异源双链和杂交状态)永久或过渡性地存在。在一些 实施方案中,核酸或核酸序列包含其他种类的核酸结构,比如DNA/RNA螺旋、肽核酸(PNA)、吗啉代、锁核酸(LNA)和/或核酶。因此,术语“核酸”或“核酸序列”还可包括包含非天然核苷酸、修饰的核苷酸和/或可表现出与天然核苷酸相同功能的非核苷酸构建块(例如“核苷酸 类似物”)的链;进一步地,如本文所使用的术语“核酸序列”是指寡核苷酸、核苷酸或多核苷酸及其片段或部分,以及指基因组或合成来源的DNA或RNA,其可为单链或双链的,并且代表正义链或反义链。 [0044] 如本文所使用的术语“核苷酸类似物”是指修饰的或非天然存在的核苷酸,包括但不限于具有改变的堆叠相互作用的类似物,比如7‑脱氮嘌呤(例如7‑脱氮‑dATP和7‑脱氮‑dGTP);具有备选氢键键合构型的碱基类似物(例如Iso‑C和Iso‑G以及其他非标准碱基对,例如如美国专利号6,001,983中所述,该专利通过参考结合);非氢键键合类似物(例如非极性芳族核苷类似物,比如2,4‑二氟甲苯,例如如Schweitzer和Kool, J. Org. Chem.,  1994, 59, 7238‑7242、Schweitzer和Kool, J. Am. Chem. Soc., 1995, 117, 1863‑1872中所述;所述文献的每一个均通过参考结合);“通用”碱基,比如5‑硝基吲哚和3‑硝基吡咯; 以及通用嘌呤和嘧啶(比如分别为“K”和“P”核苷酸;P. Kong等人, Nucleic Acids Res.,  1989, 17, 10373‑10383、P. Kong等人, Nucleic Acids Res., 1992, 20, 5149‑5152,所述文献的每一个均通过参考结合)。核苷酸类似物包括在糖部分上具有修饰的核苷酸,比如双脱氧核苷酸和2’‑O‑甲基核苷酸。核苷酸类似物包括脱氧核糖核苷酸以及核糖核苷酸的修饰形式。 [0045] “肽核酸”意指并入了肽样聚酰胺骨架的DNA模拟物。 [0046] 如本文所使用的,术语“互补的”或“互补性”被用于指涉通过碱基配对法则相关联的多核苷酸(例如核苷酸序列,比如寡核苷酸计数器探针、寡核苷酸积分器探针或作为核酸的目标分析物)。例如,对于序列“5’‑A‑G‑T‑3’”而言为与序列“3’‑T‑C‑A‑5’”互补。互补性可为“部分的”,其中根据碱基配对法则仅有一些核酸的碱基为匹配的。或者,核酸之间可能存在“完全(complete)”或“完全(total)”的互补性。核酸链之间的互补性程度对核酸链之间杂交的效率和强度具有显著影响。这在扩增反应和取决于核酸之间结合的检测方法中特 别重要。任一术语也可被用于指涉单个核苷酸,尤其是在多核苷酸的上下文中。例如,寡核苷酸内的特定核苷酸可由于其与另一核酸链内核苷酸的互补性或缺少互补性而受到关注, 这与寡核苷酸的其余部分和该核酸链之间的互补性形成对比或比较。 [0047] 在一些上下文中,术语“互补性”和相关术语(例如“互补的”和“互补物”)是指可通过氢键与另一酸序列结合的核酸序列的核苷酸,例如能够例如通过Watson‑Crick碱基配对或其他碱基配对进行碱基配对的核苷酸。可形成(例如彼此互补的)碱基对的核苷酸为以下 对:胞嘧啶和鸟嘌呤、胸腺嘧啶和腺嘌呤、腺嘌呤和尿嘧啶以及鸟嘌呤和尿嘧啶。不需要在核酸序列的整个长度上计算互补性百分比。互补性的百分比可限于其核酸序列碱基配对的 特定区域,例如从第一个碱基配对的核苷酸开始并在最后一个碱基配对的核苷酸结束。如 本文所使用的核酸序列的互补物是指,当与核酸序列比对使得一个序列的5’端与另一个序列的3’端配对时,处于“反向平行缔合”的寡核苷酸。某些在天然核酸中不常见的碱基可被包括在本发明的核酸中并且包括例如肌苷和7‑脱氮鸟嘌呤。互补性不需要完美;稳定的双链体可含有错配的碱基对或不匹配的碱基。核酸技术领域的技术人员可根据经验考虑许多 变量确定双链体稳定性,所述包括例如寡核苷酸的长度、寡核苷酸的碱基组成、寡核苷酸的序列、包含寡核苷酸的组合物的离子强度以及两个寡核苷酸之间错配碱基对的发生率。 [0048] 因此,在一些实施方案中,“互补的”是指在8、9、10、11、12、13、14、15、16、17、18、 19、20、21、22、23、24、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100或更多个核碱基的区域上,与具有第二核酸序列的互补物具有至少60%、65%、70%、75%、80%、85%、90%、 95%、97%、98%或99%同一性的第一核酸序列,或者这两个序列在严格杂交条件下杂交。“完全互补的”意指第一核酸的每个核碱基都能够与第二核酸中相应位置处的每个核碱基配对。 例如,在某些实施方案中,其中每个核碱基都对核酸具有互补性的寡核苷酸在8、9、10、11、 12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45、50、55、60、65、70、75、80、 85、90、95、100或更多个核碱基的区域上具有与核酸的互补物一致的核碱基序列。 [0049] 如本文所使用的,术语“错配”是指第一核酸的核碱基不能与第二核酸相应位置处的核碱基配对。 [0050] 如本文所使用的,术语“野生型”是指当从天然存在的来源分离时具有该基因或基因产物特性的基因或基因产物。野生型基因为在群体中最常观察到的基因,并因此被任意 指定为该基因的“正常”或“野生型”形式。相比之下,术语“修饰的”、“突变体”、“变体”或“多态的”是指当与野生型基因或基因产物相比较,在序列和/或功能特性(例如改变的特性)方面显示修饰的基因或基因产物。值得注意的是,可分离出天然存在的突变体;这些是通过这样的事实来鉴定的,即当与野生型基因或基因产物相比较时它们具有改变的特性。因此,当被用于指涉核苷酸序列时,术语“变体”和“突变体”是指与另一者(通常为相关的核苷酸序列)相差一个或多个核苷酸的核酸序列。“变异”为两个不同核苷酸序列之间的差异;在一些实施方案中,一个序列为“参考序列”。 [0051] 如本文所使用的,术语“杂交”被用于指涉互补核酸的配对。杂交和杂交强度(例如核酸之间的缔合强度)受诸如核酸之间的互补程度、所涉及条件的严格性和所形成杂合体 的Tm等因素影响。“杂交”方法涉及将一种核酸退火于另一互补核酸,例如具有互补核苷酸序列的核酸。包含互补序列的两种核酸聚合物通过碱基配对相互作用寻找彼此并退火的能 力为公认的现象。Marmur和Lane, Proc. Natl. Acad. Sci. USA46:453 (1960)以及Doty 等人, Proc. Natl. Acad. Sci. USA46:461 (1960) (每一篇均通过参考结合至本文中) 的“杂交”过程的初步观察之后,已经将该过程细化为现代生物学的基本工具。 [0052] 如本文使用的术语“黏性末端”是指短的(例如包含1‑10 (例如1、2、3、4、5、6、7、8、 9或10 nt))单链核酸延伸,其与核酸双链体相邻并加速第三核酸与双链体其中一条链的结 合且置换初始双链体的一条链。因此,“黏性末端”可提供被配置为启动互补核酸序列杂交的核酸成核位点。在一些实施方案中,互补寡核苷酸序列之间杂交的速率常数可使用被称 为黏性末端介导的链置换的现象在约100万倍的范围内进行操纵(参见例如Zhang &  Winfree (2009) “Control of DNA strand displacement kinetics using toehold  exchange.” J. Am. Chem. Soc. 131: 17303‑14,通过参考结合至本文中)。 [0053] 如本文所使用的,术语“置换”包括完全置换和至少部分置换两者。如本领域的技术人员将意识到的,部分置换对于本文的各种实施方案可为足够的,和/或可在完全置换发生之前发生。完全或部分置换将足以实现功能。完全或部分置换可根据需要各自通过术语 “完全”或“部分”进行指定。 [0054] 如本文所使用的,术语“Tm”被用于指涉“解链温度”。解链温度为双链核酸分子群变成一半解离成单链的温度。用于计算核酸的Tm的几个方程式为本领域众所周知的。如标 准参考文献所示,当核酸在1 M NaCl的水溶液中时,Tm值的简单估算可通过以下方程式进 行计算:Tm = 81.5 + 0.41 * (% G+C) (参见例如Anderson和Young, “Quantitative  Filter Hybridization”在Nucleic Acid Hybridization (1985)中,通过参考结合至本 文)。其他参考文献(例如Allawi和SantaLucia, Biochemistry 36: 10581‑94 (1997),通过参考结合至本文)包括更复杂的计算,其考虑结构、环境和序列特性来计算Tm。例如,在一些实施方案中,这些计算为短核酸探针和目标物(例如如在实施例中使用的)提供改进的Tm 估算。 [0055] 术语“蛋白”和“多肽”是指包含经肽键连接的氨基酸的化合物并且可互换使用。由基因编码的“蛋白”或“多肽”不局限于由基因编码的氨基酸序列,还包括蛋白的翻译后修饰。当本文所述的术语“氨基酸序列”是指蛋白分子的氨基酸序列时,“氨基酸序列”和类似术语比如“多肽”或“蛋白”并不意指将氨基酸序列局限于与所述蛋白分子相关的完整天然氨基酸序列。此外,“氨基酸序列”可推断自编码蛋白的核酸序列。常规的单字母和三字母氨基酸代码在本文中使用如下:丙氨酸:Ala,A;精氨酸:Arg,R;天冬酰胺:Asn,N;天冬氨酸: Asp,D;半胱氨酸:Cys,C;谷氨酸:Glu、E;谷氨酰胺:Gln,Q;甘氨酸:Gly,G;组氨酸:His,H;异亮氨酸:Ile,I;亮氨酸:Leu,L;赖氨酸:Lys,K;甲硫氨酸:Met,M;苯丙氨酸:Phe,F;脯氨酸: Pro,P;丝氨酸:Ser,S;苏氨酸:Thr,T;色氨酸:Trp,W;酪氨酸:Tyr,Y;缬氨酸:Val,V。如本文所使用的,代码Xaa和X是指任何氨基酸。 [0056] 当用于指涉多肽时,术语“变体”和“突变体”是指与另一者(通常为相关的多肽)相差一个或多个氨基酸的氨基酸序列。 [0057] 如本文所使用的,“稳定相互作用”或指涉“稳定结合的”相互作用是指在相互作用的热力学平衡条件下相对持久的两个实体或组件的缔合。在一些实施方案中,“稳定相互作‑9 ‑8 用”为具有小于约10  M的KD或者在一些实施方案中具有小于10  M的KD的两个组件之间的 相互作用。在一些实施方案中,“稳定相互作用”具有每小时小于1的解离速率常数koff,或者在一些实施方案中,具有每分钟小于1的解离速率常数koff。在一些实施方案中,“稳定相互作用”被定义为非“瞬时相互作用”而“瞬时相互作用”被定义为非“稳定相互作用”。在一些实施方案中,“稳定相互作用”包括由共价键介导的相互作用和一般不由KD值描述但涉及两个实体之间每一次相互作用超过约1分钟(例如30、35、40、45、50、55、60、65、70、75、80、85、 90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175或180秒)的平均缔合寿命的其他相互作用。 [0058] 在一些实施方案中,“稳定相互作用”和“瞬时相互作用”之间的区别由KD和/或koff的截止值和/或描述缔合的另一个动力学或热力学值来确定,其中截止值被用于在稳定和 瞬时相互作用之间进行区分,如果以KD和/或koff的绝对条件或者描述缔合的另一个动力学或热力学值来描述,则所述相互作用可以不同方式进行表征。例如,由KD值表征的“稳定相互作用”也可在另一种甚至更稳定的相互作用的上下文中被表征为“瞬时相互作用”。本领域的技术人员应当理解稳定和瞬时相互作用的其他相对比较,例如由KD值表征的“瞬时相 互作用”也可在甚至更瞬时(更不稳定)的另一种相互作用的上下文中被表征为“稳定相互 作用”。 [0059] 如本文所使用的,术语“稳定相互作用”、“稳定结合”和“稳定缔合”可互换使用。如本文所使用的,术语“瞬时相互作用”、“瞬时结合”和“瞬时缔合”可互换使用。 [0060] 术语“特异性结合”或“特异性地结合”当被用于指涉彼此缔合的两个组分A和B的相互作用时,是指A和B缔合,其具有比A或B与溶液中其他类似组分(例如溶液中至少一种不是A或B的其他分子种类)的相互作用的KD更小的KD。 [0061] 如本文所使用的,术语“亲和力”是指一个实体(例如分子)与另一个实体(例如分 子)的相互作用(例如结合)的强度,所述一个实体与另一个实体例如抗体与抗原。在一些实施方案中,亲和力取决于实体之间立体化学匹配的紧密程度、它们之间的接触面积大小、荷电和疏水基团的分布等。 [0062] 如本文所使用的,术语“不可逆相互作用”是指具有长于温育时间的解离半衰期的相互作用(例如缔合、结合等),所述时间例如在一些实施方案中为1‑10分钟(例如60、70、 80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、 270、280、290、300、310、320、330、340、350、360、370、380、390、400、410、420、430、440、450、 460、470、480、490、500、510、520、530、540、550、560、570、580、590或600秒或者更长)的时间。 [0063] 如本文所使用的,术语“灵敏度”是指当样品包含分析物时,测定对分析物给出阳性结果的概率。灵敏度被计算为真阳性结果数除以真阳性和假阴性的总和。灵敏度为测定 检测分析物的能力的量度。 [0064] 如本文所使用的,术语“特异性”是指当样品不包含分析物时,测定给出阴性结果的概率。特异性被计算为真阴性结果数除以真阴性和假阳性的总和。特异性为本发明的方 法将不包含分析物的样品从确实包含分析物的样品中排除的能力的量度。 [0065] 如本文所使用的,“平衡常数”(Keq)、“平衡缔合常数”(Ka)和“缔合结合常数”(或“结合常数”(KB))可互换地用于以下处于平衡的A和B的结合反应: 其中A和B为两个彼此缔合的实体(例如计数器探针和分析物、积分器探针和分析 物、标签和积分器探针、标签和计数器探针等),并且Keq = [AB] / ([A] × [B])。解离常数KD = 1/KB。KD为描述一个结合配偶体A对与之缔合的配偶体B的亲和力的有用方式,例如数值KD表示产生大量AB所需的A或B的浓度。Keq = koff/kon;KD = koff/kon。因此,解离常数KD和缔合常数KA为亲和力的定量量度。在平衡时,A和B与A‑B复合物处于平衡状态,并且速率常数ka和kd量化平衡状态的单个正向和逆向反应的速率: 在平衡时,ka [A][B]=kd [AB]。解离常数KD由KD=kd/ka=[A][B]/[AB]给出。KD具有 浓度单位,例如M、mM、µM、nM、pM等。当比较以KD来表示的亲和力时,数值较低表示亲和力更‑1 ‑1 大。缔合常数KA由KA=KA/KD=[AB]/[A][B]给出。KA具有倒数的浓度单位,最典型地为M 、mM 、‑1 ‑1 ‑1 µM 、nM 、pM 等。 [0066] 如本文所使用的,“部分”是指某物可被划分成的两个或更多个部分中的一个,比如寡核苷酸、分子、化学基团、结构域、探针、“R”基团、多肽等的各个部分。 [0067] 在一些实施方案中,该技术包括抗体组分或部分,例如抗体或其片段或衍生物。如本文所使用的,“抗体”,也被称为“免疫球蛋白”(例如IgG、IgM、IgA、IgD、IgE),包括两条通过二硫键彼此连接的重链和两条轻链,所述轻链的每一条都通过二硫键连接于重链。抗体 的特异性在于抗体的抗原结合位点(或互补位)与抗原决定簇(或表位)之间的结构互补性。 抗原结合位点由主要来自高变或互补决定区(CDR)的残基组成。有时,来自非高变或框架区的残基会影响整个结构域结构,从而影响结合位点。一些实施方案包含抗体片段,例如任何含有蛋白或多肽的分子,其包含免疫球蛋白分子的至少一部分,以允许所述分子与抗原之 间的特异性相互作用。免疫球蛋白分子的部分可包括但不限于重链或轻链的至少一个互补 决定区(CDR)或其配体结合部分、重链或轻链可变区、重链或轻链恒定区、框架区或其任何部分。此类片段可通过酶促切割、合成或重组技术产生,如本领域已知和/或如本文所述的。 抗体也可使用其中在天然终止位点上游引入一个或多个终止密码子的抗体基因以多种截 短形式产生。抗体的各个部分可通过常规技术化学地连接在一起,或者可使用基因工程技 术制备为连续蛋白。 [0068] 抗体片段包括但不限于Fab (例如通过木瓜蛋白酶消化)、F(ab’)2 (例如通过胃 蛋白酶消化)、Fab’(例如通过胃蛋白酶消化和部分还原)和Fv或scFv (例如通过分子生物 学技术)片段。Fab片段可通过用蛋白酶木瓜蛋白酶处理抗体来获得。此外,Fab可通过将编码抗体的Fab的DNA插入到用于原核表达系统或用于真核表达系统的载体中,并将该载体引 入到原核生物或真核生物内以表达Fab来产生。F(ab’)2可通过用蛋白酶胃蛋白酶处理抗体来获得。此外,F(ab’)2可通过经硫醚键或二硫键结合Fab’来产生。Fab可通过用还原剂(例如二硫苏糖醇)处理F(ab’)2来得到。此外,Fab’可通过将编码抗体的Fab’片段的DNA插入到用于原核生物的表达载体或用于真核生物的表达载体中,并将该载体引入到原核生物或真 核生物内用于其表达来产生。Fv片段可通过经胃蛋白酶的限制性切割来产生,例如在4℃和pH 4.0下(被称为“冷胃蛋白酶消化”的方法)。Fv片段由通过强非共价相互作用结合在一起的重链可变结构域(VH)和轻链可变结构域(VL)组成。scFv片段可通过以下产生:获得编码如前所述的VH和VL结构域的cDNA,构建编码scFv的DNA,将DNA插入到用于原核生物的表达载体或用于真核生物的表达载体中,以及然后将该表达载体引入到原核生物或真核生物中以表 达scFv。 [0069] 一般而言,通常可使用本领域现在众所周知的许多常规技术来产生针对任何抗原 的抗体。 [0070] 如本文所使用的,术语“缀合的”是指当一种分子或试剂物理或化学偶联或附着于另一种分子或试剂时。缀合的实例包括共价键和静电复合。术语“复合的”、“与...复合”和“缀合的”在本文中可互换使用。 [0071] 如本文所使用的,术语“温育温度”是指在观察组合物以检测、表征和/或量化样品中的分析物(如果存在) (例如以记录表明样品中分析物(如果存在)的存在、不存在和/或 数量的数据)之前,对包含积分器探针、计数器探针和样品的组合物进行温育(例如保持或 维持恒定或基本上恒定或有效地恒定)的温度。在一些实施方案中,“温育温度”使用主动加热和冷却(例如热泵、Peltier设备、水浴或本领域已知的其他技术以将样品的温度保持例 如在设定温度的0.1至0.5至1.0℃范围内)来控制。在一些实施方案中,温育温度为10‑110℃ (例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、 33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、 58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、 83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、 106、107、108、109或110℃)。 [0072] 如本文所使用的,术语“温育时间”是指在观察组合物以检测、表征和/或量化样品中的分析物(如果存在) (例如以记录表明样品中分析物(如果存在)的存在、不存在和/或 数量的数据)之前在温育温度下对包含积分器探针、计数器探针和样品的组合物进行温育 (例如保持或维持恒定或基本上恒定或有效地恒定)的时间长度。温育时间足够计数器探针 与分析物分子结合和标签从计数器探针转移至积分器探针的多次循环,以产生用标签的多 个拷贝进行标记的积分器探针的一个或多个拷贝。在一些实施方案中,“温育时间”是指数十到数百到数千秒的时间量,例如5、10、15、20、25、30、35、40、45、50、55或60秒;例如5、10、 15、20、25、30、35、40、45、50、55或60分钟;例如1、1.5、2、2.5或3小时。在一些实施方案中,“温育时间”是指约1‑10秒至1‑10分钟的时间量(例如约1‑100秒,例如1、2、3、4、5、6、7、8、9、 10、11、12、13、14、15、16、17、18、19、20、30、40、50、60、70、80、90或100秒,例如1‑100分钟,例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、30、40、50、60、70、80、90或 100分钟)。在一些实施方案中,温育时间包括在不同温育温度(例如第一温育温度、第二温育温度、第三温育温度等)下的多个较短温育时间(例如第一温育时间、第二温育时间、第三温育时间等)。 [0073] 如本文所使用的,术语“积分器探针”是指稳定地结合于分析物并且可以不可逆地(例如基本上不可逆地和/或有效地不可逆转地)接受(例如稳定地共价结合或稳定地非共 价结合)来自一个或多个计数器探针的多个标签的任何实体(例如分子、生物分子、胶体颗 粒、液相等)。在一些实施方案中,积分器探针以高热力学稳定性(例如以比温育温度高10℃以上的解链温度或长于温育时间的平均寿命)结合分析物。在一些实施方案中,积分器探针共价连接于多个标签。在一些实施方案中,积分器探针与多个标签间接和/或非共价地连接和/或缔合。在一些实施方案中,积分器探针为识别分析物的蛋白。在一些实施方案中,积分器探针为识别分析物的核酸(例如寡核苷酸)。例如,在一些实施方案中,积分器探针包含例如DNA、RNA、含有DNA和RNA的核酸、含有修饰的碱基和/或碱基之间修饰的键的核酸,比如如本文所述的核酸。在一些实施方案中,核酸积分器探针包含核酸适体。在一些实施方案中,积分器探针包含多于一种类型的分子(例如多于一种蛋白、核酸、化学接头或化学部分)。例如,在一些实施方案中,积分器探针包含含有蛋白和核酸的缀合物(例如蛋白‑核酸缀合物,其中核酸(例如寡核苷酸)共价连接于多肽(例如蛋白和/或肽)以提供嵌合分子。在一些实 施方案中,积分器探针包含抗体(例如单克隆抗体)或抗体片段。在一些实施方案中,积分器探针包含纳米抗体、DNA结合蛋白或DNA结合蛋白结构域。在一些实施方案中,积分器探针为有机小分子(例如分子量小于约2000道尔顿,例如小于2100、2050、2000、1950、1900、1850、 1800、1750、1700、1650、1600、1550、1500道尔顿或更小的分子)。在一些实施方案中,积分器探针在与分析物缔合之前进行标记(例如在一些实施方案中,积分器探针用第一标签进行 标记并且可以不可逆地接受(例如稳定地共价或非共价结合)来自一个或多个计数器探针 的多个第二标签)。在其中分析物包含碳水化合物或多糖的一些实施方案中,积分器探针包含碳水化合物结合蛋白,比如凝集素或碳水化合物结合抗体。在一些实施方案中,积分器探针被设计为相对于非设计形式增强其结合,例如以提供比非设计形式更加热力学稳定的与 分析物的结合和/或缔合。除包含抗体的积分器探针之外,实施方案还包括目标分析物和是蛋白的积分器探针,例如,其中一个结合配偶体为积分器探针且另一个结合配偶体为所测 量的分析物。实施方案包括使用结合任何配体的适体、结合糖基化蛋白的凝集素、结合脂质的蛋白或其他分子等。该技术包括使用具有适合于如本文所述的检测的稳定结合行为的任 何结合对。 [0074] 如本文所使用的,术语“计数器探针”是指与分析物瞬时结合并且包含可以不可逆地(例如基本上不可逆地或有效地不可逆转地)从计数器探针转移至积分器探针的标签的 任何实体(例如分子、生物分子等)。在一些实施方案中,在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下,计数器探针对分析物的解离常数(KD)大于约0.1纳摩尔(例如大于0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、 1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、 3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或5.0或者更大的纳摩尔)。该技术考虑广泛范围的分析物类型、计数器探针类型以及计数器探针和分析物之间瞬时相互作用的缔合类型和/或强度。因此,在一些实施方案中,在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下,计数器探针对分析物的解离常数(KD)在约0.1 nm‑约100 nm的范围内(例如0.1、0.2、0.3、0.4、0.5、0.6、0.7、 0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、 2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、 4.6、4.7、4.8、4.9、5.0、6.0、7.0、8.0、9.0、10、15、20、25、30、35、40、45、50、55、60、65、70、 75、80、85、90、95或100 nm)。在一些实施方案中,例如其中计数器探针具有多于一种形式(例如从第一形式(例如与分析物结合的形式)转化为另一形式(例如与分析物解离的形 式)),例如通过计数器探针释放组分,在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下第一形式的计数器探针对分析物的第一解离常数(KD)在 约1‑约100皮摩尔的范围内(例如1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、 2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、 4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、6.0、7.0、8.0、9.0、10、15、20、25、30、35、40、 45、50、55、60、65、70、75、80、85、90、95或100 nm),以及在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下第二形式的计数器探针对分析物的第 二解离常数(KD)在约10 nm‑约100 nm的范围内(例如10、20、30、40、50、60、70、80、90、100、 200、300、400、500、600、700、800、900或1000 nm)。 [0075] 在一些实施方案中,在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下,计数器探针对分析物的结合速率常数和/或解离速率常数大于 ‑1 约0.1 min  (例如大于0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、 1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、 3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或5.0或者更大‑1 的min )。该技术考虑广泛范围的分析物类型、计数器探针类型以及计数器探针和分析物之间瞬时相互作用的缔合类型和/或强度。因此,在一些实施方案中,在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下,计数器探针对分析物的结‑1 ‑1 合速率常数和/或解离速率常数在约0.1 min ‑10 min 的范围内(例如0.1、0.2、0.3、0.4、 0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、 2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、 4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、 6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8.0、 8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9.0、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或‑1 10.0 min )。在一些实施方案中,例如其中计数器探针具有多于一种形式(例如从第一形式(例如与分析物结合的形式)转化为另一形式(例如与分析物解离的形式)),例如通过计数 器探针释放组分,在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放‑1 组分的存在)下第一形式的计数器探针对分析物的第一解离速率常数为约小于0.1 min   (例如小于0.10、0.09、0.08、0.07、0.06、0.05、0.04、0.03、0.02、0.01、0.010、0.009、0.008、‑1 0.007、0.006、0.005、0.004、0.003、0.002或0.001 min ),以及在测定条件(例如温育温度、探针浓度、pH、盐浓度和/或计数器探针释放组分的存在)下第二形式的计数器探针对分析 ‑1 ‑1 物的第二解离速率常数在约0.1 min ‑约10 min 的范围内(例如10.1、0.2、0.3、0.4、0.5、 0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、 2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、 4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2、 6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8.0、8.1、 8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9.0、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或10.0 ‑1 5 6 ‑1 ‑1 min )。在一些实施方案中,计数器探针与分析物的结合速率常数为至少10‑10 M  s 。 [0076] 在一些实施方案中,计数器探针的瞬时结合产生自将稳定结合的计数器探针转化 成与分析物解离的瞬时结合的计数器探针,例如通过酶促反应或构象变化,其将与分析物 稳定结合的计数器探针转化成与分析物解离的瞬时结合的计数器探针。在一些实施方案 中,计数器探针共价连接于可转移至积分器探针的标签。在一些实施方案中,计数器探针与可转移至积分器探针的标签间接和/或非共价地连接和/或缔合。在一些实施方案中,计数 器探针为识别分析物的蛋白。在一些实施方案中,计数器探针为识别分析物的核酸(例如寡核苷酸)。例如,在一些实施方案中,积分器探针包含例如DNA、RNA、含有DNA和RNA的核酸、含有修饰的碱基和/或碱基之间修饰的键的核酸,比如如本文所述的核酸。在一些实施方案 中,计数器探针包含含有DNA核苷酸的第一部分和含有RNA核苷酸的第二部分。在一些实施 方案中,计数器探针以约10:1、5:1、2:1、1:1、1:2、1:5或1:10的比率包含DNA核苷酸和RNA核苷酸。在一些实施方案中,核酸计数器探针包含核酸适体。在一些实施方案中,计数器探针包含多于一种类型的分子(例如多于一种蛋白、核酸、化学接头或化学部分)。在一些实施方案中,计数器探针包含抗体(例如单克隆抗体)或抗体片段。在一些实施方案中,计数器探针包含低亲和力抗体(例如单克隆抗体)或抗体片段。在一些实施方案中,计数器探针包含纳 米抗体、DNA结合蛋白或DNA结合蛋白结构域。在一些实施方案中,计数器探针为有机小分子(例如分子量小于约2000道尔顿,例如小于2100、2050、2000、1950、1900、1850、1800、1750、 1700、1650、1600、1550、1500道尔顿或更小的分子)。在其中分析物包含碳水化合物或多糖的一些实施方案中,计数器探针包含碳水化合物结合蛋白,比如凝集素或碳水化合物结合 抗体。在一些实施方案中,在一些实施方案中,计数器探针被设计为相对于非设计形式减弱其结合,例如以提供比非设计形式热力学稳定性差和/或更加瞬时的与分析物的结合和/或 缔合。除包含抗体的计数器探针之外,实施方案还包括目标分析物和是蛋白的计数器探针,例如,其中一个结合配偶体为计数器探针且另一个结合配偶体为所测量的分析物。实施方 案包括使用结合任何配体的适体、结合糖基化蛋白的凝集素、结合脂质的蛋白或其他分子 等。该技术包括使用具有适合于如本文所述的检测的瞬时结合行为的任何结合对。 [0077] 如本文所使用的,术语“计数器探针释放组分”是指促进计数器探针从计数器探 针‑分析物复合物解离的实体(例如分子、生物分子(例如酶)),例如在标签从计数器探针转移至积分器探针之后。也就是说,在测定条件(例如温育温度、探针浓度、pH和盐浓度)下,计数器探针释放组分将与分析物缔合的计数器探针转化为与分析物解离或与分析物快速解 ‑1 ‑1 离的计数器探针(例如解离速率常数为0.1 min ‑约10 min  (例如10.1、0.2、0.3、0.4、 0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、 2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、 4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、 6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、 7.5、7.6、7.7、7.8、7.9、8.0、 8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9.0、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或‑1 10.0 min ))。在一些实施方案中,计数器探针的第一部分(例如包含标签的部分)保持与积分器探针缔合,并且计数器探针的第二部分与分析物解离。在一些实施方案中,计数器探针释放组分为酶(例如RNase H),当其与分析物(例如DNA分析物)结合时会降解计数器探针的 一部分(例如包含RNA的计数器探针的一部分)。 [0078] 如本文所使用的,术语“点击化学”或“点击反应”是指化学反应,其具有所期望的化学产率,产生生理上稳定的产物,并且其表现出有利于产生单一产物的“弹簧承载”反应的大的热力学驱动力。参见例如Huisgen (1961) “Centenary Lecture ‑ 1,3‑Dipolar Cycloadditions”, Proceedings of the Chemical Society of London  357;Kolb,  Finn, Sharpless (2001) “Click Chemistry: Diverse Chemical Function from a Few Good Reactions”, Angewandte Chemie International Edition 40(11): 2004‑2021,所述文献的每一篇均通过参考结合至本文中。点击化学可包括Diels‑Alder反应、巯基‑炔反应、叠氮‑炔反应、四嗪‑反式环辛烯反应及其组合,或者形成单一生理上稳定的产物(例如共价键)具有所期望的化学产率和大的热力学驱动力的其他反应(例如在“弹簧承载”反应 中)。例如,基础点击反应为在铜(I)催化的叠氮‑炔环加成(“CuAAC”)反应中炔与叠氮基(例如N3,例如N=N=N)的反应,以在叠氮的氮和烷基碳之间形成两个新共价键。共价键在于键合之前包含叠氮和炔部分的第一组分和第二组分之间形成化学连接(例如包括五元三唑环)。 在一些实施方案中,反应在包含铜基催化剂(比如Cu/Cu(OAc)2)、叔胺(比如三‑(苄基三唑基甲基)胺(TBTA))和/或四氢呋喃和乙腈(THF/MeCN))的环境中进行。在一些实施方案中, 点击反应为无铜点击反应,例如四嗪部分(例如包含4个氮原子的六元芳环(C2H2N4),例如1, 2,3,4‑四嗪、1,2,3,5‑四嗪或1,2,4,5‑四嗪)与反式环辛烯部分(例如(CH2)6(CH)2)之间的点击反应。参见例如Jewett和Bertozzi  (2010) “Cu‑free click cycloaddition  reactions in chemical biology” Chem Soc Rev 39: 1272‑79;Freidel (2016)  “Chemical tags for site‑specific fluorescent labeling of biomolecules” Amino Acids 48: 1357‑72;以及Kim和Koo (2019) “Biomedical applications of copper‑free click chemistry: in vitro, in vivo, and ex vivo” Chem Sci 10: 7835‑51,所述文献的每一篇均通过参考结合至本文中。如本文所使用的,在点击反应中反应以形成产物的 两个部分被称为“第一点击反应物”和“第二点击反应物”。如本文所使用的,“第一点击反应物”和“第二点击反应物”在点击反应中形成“点击产物”。在一些实施方案中,“点击催化剂”促进从第一点击反应物和第二点击反应物形成点击产物(例如通过降低点击反应的活化 能)。 [0079] 描述 尽管本文的公开涉及某些说明的实施方案,但是应当理解,这些实施方案为通过 实例的方式而不是通过限制的方式呈现。 [0080] 用于分析物检测的组合物 在一些实施方案中,该技术提供用于使用积分器探针和计数器探针检测分析物的 组合物。积分器探针(I)与分析物(A)稳定地(例如热力学稳定)结合,并且能够不可逆地和/或基本上不可逆地和/或有效地不可逆地结合(例如共价或非共价地)标签部分(L)的多个 拷贝。计数器探针(T)与分析物(A)瞬时结合并包含标签部分(L)。在计数器探针(T)与分析 物(A)结合后,计数器探针(T)不可逆地或基本上不可逆地或有效地不可逆地将标签部分 (L)转移至积分器探针(I) (例如积分器探针(I)的临近拷贝)。也就是说,与分析物(A)结合的计数器探针(T)以高概率将标签部分(L)转移至与同一分析物分子(A)结合的积分器探针 (I)。将积分器探针(I)和计数器探针(T)与包含分析物(A)的组合物一起温育足够长的时间 (例如温育时间),以提供计数器探针(T)与存在的每个分析物(A)分子结合的多次循环,从 而产生用标签部分(L)的多个拷贝进行标记的积分器探针(I)的一个或多个拷贝。参见例如 图1。 [0081] 因此,当(例如当且仅当)积分器探针与分析物结合时,积分器探针以高概率不可 逆地结合多个(例如至少2个)标签部分(图1)。在不存在分析物(A)或存在虚假分析物(A*) 的情况下,积分器探针和计数器探针低得多的批量浓度使得标签部分转移至积分器探针为 极其罕见的事件,并且绝大多数积分器探针包含少量标签部分(例如0或1) (图1)。换言之,分析物的存在极大地加速多重标记的积分器探针的产生,在不存在分析物的情况下,所述 探针仅非常缓慢地产生。分析物通过带有至少N个(例如至少2个)拷贝的标签的积分器探针 的一个或多个拷贝的存在来检测。检测通过可在包含多个标签部分的积分器探针与不包含 或包含很少标签部分的积分器探针之间进行区分的任何方法来完成。 [0082] 如图1所示,积分器探针I与分析物A稳定结合,并且计数器探针T与A的同一拷贝的 重复结合触发标签L (星形)从T转移至I。由于与A的同一拷贝结合导致I和T的局部有效浓 度高,因此这种标签的转移是快速的。最初,I不包含来自T结合的标签并被指定为I0。在T结合的多次循环之后,I被N≥ 2个标签修饰并被指定为IN。因此,I保留了对A的相关拷贝已发生了多少次T结合循环的记忆。在不存在分析物A的情况下(图1,案例2),标签从T转移至I是缓慢的,因为T与I并非共定位的(例如没有局部高浓度的T和I,并因此标签转移T至I没有增强)。在存在虚假分析物A*的情况下(图1,案例3),T和/或I与A*的结合是弱的,并且平衡偏好于其中两个探针(I和T)并不同时与A*的同一拷贝结合的状态。因此,标签在存在A*的情 况下从T至I的转移比存在A的情况下要慢得多。因此,在给定的I拷贝上存在多个(例如多于 2个)标签提供表明混合物中存在A的特定特征。 [0083] 用于检测核酸(例如DNA)分析物的技术的示例性实施方案如图2所示。在该示例性 实施方案中,每个积分器探针读包含多个四嗪部分(Tz);每个计数器探针都包含RNA核苷酸区域(“RNA黏性末端”)和一个反式环辛烯部分。四嗪部分(Tz)和反式环辛烯部分(TCO)之间的点击化学反应(例如无铜点击化学反应)被用于形成积分器探针I和计数器探针T (例如 包含标签L)之间的共价键。杂交介导计数器T和分析物A之间的相互作用。由于存在降解含 有与分析物序列互补的RNA核苷酸的T部分的RNase H,使得这种相互作用为瞬时的。在计数器探针结合、点击反应和降解的多次循环之后,T的多个拷贝(部分被RNase H降解)与每个 积分器探针共价结合。通过检测包含多个(例如多于2个)部分地降解的计数器探针分子(例 如包含标签)的积分器探针来检测分析物。例如,可通过变性聚丙烯酰胺凝胶电泳(PAGE)或通过全内反射荧光(TIRF)显微术来确定多重结合的积分器探针(图2)。该技术可被用于计 数器探针与分析物之间相对较长或较短的相互作用,并且可适于检测其他类型的分析物, 比如蛋白(图2)。 [0084] 在一些实施方案中,计数器探针为核酸或适体。在一些实施方案中,计数器探针为低亲和力抗体、抗体片段或纳米抗体。在一些实施方案中,计数器探针为DNA结合蛋白、RNA结合蛋白或DNA结合核糖核蛋白复合物。在一些实施方案中,计数器探针包含多种类型如本文所述的分子或部分(例如核酸和蛋白)。 [0085] 在一些实施方案中,积分器探针为高亲和力抗体、抗体片段或纳米抗体。在一些实施方案中,积分器探针为核酸。在一些实施方案中,积分器探针包含多种类型如本文所述的分子或部分(例如核酸和蛋白)。在一些实施方案中,积分器探针包含与批量混合物分离的 物质相,比如胶体纳米颗粒或者液包液乳液或其他多相系统的不同相。 [0086] 分析物 该技术并不局限于被检测、量化、鉴定或以其他方式表征(例如存在、不存在、量、 浓度、状态)的分析物。如本文所使用的,术语“分析物”为广泛的术语并且以其通常含义使用,包括但不限于是指样品比如可分析的生物样品(例如生物流体,比如血液、间质液、脑脊液、淋巴液或尿液)中的物质或化学成分。分析物可包括天然存在的物质、人工物质、代谢物和/或反应产物。在一些实施方案中,分析物包含盐、糖、蛋白、脂肪、维生素或激素。在一些实施方案中,分析物天然存在于生物样品中(例如为“内源性的”);例如,在一些实施方案中,分析物为代谢产物、激素、抗原、抗体等。或者,在一些实施方案中,分析物被引入到生物有机体中(例如“外源性的”),例如药物、药物代谢物、药物前体(例如前药)、成像用造影剂、放射性同位素、化学试剂等。药物的代谢产物和药用组合物也为所考虑的分析物。 [0087] 在一些实施方案中,分析物为多肽、核酸、小分子、脂质、碳水化合物、多糖、脂肪酸、磷脂、糖脂、鞘脂、有机分子、无机分子、辅因子、药物、生物活性剂、细胞、组织、生物体等。在一些实施方案中,分析物包含多肽、核酸、小分子、脂质、碳水化合物、多糖、脂肪酸、磷脂、糖脂、鞘脂、有机分子、无机分子、辅因子、药物、生物活性剂、细胞、组织、生物体等。在一些实施方案中,分析物包含多肽、核酸、小分子、脂质、碳水化合物、多糖、脂肪酸、磷脂、糖脂、鞘脂、有机分子、无机分子、辅因子、药物、生物活性剂、细胞、组织、生物体等中一种或多种的组合。 [0088] 在一些实施方案中,分析物为如本文所述的核酸。在一些实施方案中,分析物为包含突变(例如单核苷酸多态性、缺失、插入、重排、融合等)的核酸。在一些实施方案中,分析物为如本文所述的蛋白。在一些实施方案中,分析物为包含氨基酸取代的蛋白。 [0089] 在一些实施方案中,分析物为多分子复合物的一部分,例如多蛋白复合物、核酸/ 蛋白复合物、分子机器、细胞器(例如,例如血浆中的无细胞线粒体;质体;高尔基体、内质网、液泡、过氧化物酶体、溶酶体和/或细胞核)、细胞、病毒颗粒、组织、生物体或任何适合于通过本文所述技术进行分析的大分子复合物或结构或其他实体(例如核糖体、剪接体、穹窿体、蛋白酶体、DNA聚合酶III全酶、RNA聚合酶II全酶、对称病毒衣壳、GroEL/GroES;膜蛋白复合物:光系统I、ATP合酶、核小体、中心粒和微管组织中心(MTOC)、细胞骨架、鞭毛、核仁、应激颗粒、生殖细胞颗粒或神经元转运颗粒)。例如,在一些实施方案中,多分子复合物包含分析物并且该技术可用于表征、鉴定、量化和/或检测与该多分子复合物相关(例如其为该 多分子复合物的组分)的一种或多种分子(分析物)。在一些实施方案中,细胞外囊泡被分离并且该技术可用于表征、鉴定、量化和/或检测与囊泡相关的一种或多种分子(分析物)。在一些实施方案中,该技术可用于表征、鉴定、量化和/或检测蛋白(例如表面蛋白)和/或存在于囊泡内的分析物,例如蛋白、核酸或本文所述的其他分析物。在一些实施方案中,囊泡在分析之前被固定并透化。 [0090] 在一些实施方案中,分析物与计数器探针之间的相互作用明显地受分析物共价修 饰影响。例如,在一些实施方案中,分析物为包含翻译后修饰的多肽,例如包含翻译后修饰的蛋白或肽。在一些实施方案中,多肽的翻译后修饰影响计数器探针与分析物的缔合,例 如,积分器探针信号为多肽上翻译后修饰存在与否的函数。在一些实施方案中,包含翻译后修饰的分析物与计数器探针之间的相互作用由化学亲和标签(例如包含核酸的化学亲和标 签)介导。例如,在一些实施方案中,分析物为包含表观遗传修饰的核酸,例如包含甲基化碱基的核酸。在一些实施方案中,核酸的修饰影响计数器探针与分析物的结合,例如,积分器探针信号为核酸上修饰存在与否的函数。在一些实施方案中,分析物为包含对目标分析物 的核碱基、核糖或脱氧核糖部分的共价修饰的核酸。 [0091] 在一些实施方案中,在提供积分器探针和/或计数器探针之前,将分析物在存在载 体的情况下进行热变性。在一些实施方案中,在提供积分器探针和/或计数器探针之前,将分析物在存在载体的情况下进行化学变性,例如用变性剂(比如尿素、甲酰胺、盐酸胍、高离子强度、低离子强度、高pH、低pH或十二烷基硫酸钠(SDS))使分析物变性。 [0092] 如本文所使用的,“检测分析物”或“检测物质”应理解为包括直接检测分析物本身或通过检测其副产物间接检测分析物。 [0093] 荧光标签和荧光部分 在一些实施方案中,该技术包括使用荧光部分(例如荧光染料,也被称为“荧光团” 或“荧光体”)。例如,在一些实施方案中,积分器探针包含一个或多个荧光标签(例如包含荧光部分)。在一些实施方案中,计数器探针包含荧光标签(例如包含荧光部分)。本领域已知多种多样的荧光部分,并且已知用于将荧光部分连接于分子(例如积分器探针和/或计数器 探针)的方法。 [0094] 可被用作荧光部分的化合物的实例包括但不限于呫吨、蒽、花青、卟啉和香豆素染料。可与本技术一起使用的呫吨染料的实例包括但不限于荧光素、6‑羧基荧光素(6‑FAM)、 5‑羧基荧光素(5‑FAM)、5‑或6‑羧基‑4,7,2’,7’‑四氯荧光素(TET)、5‑或6‑羧基‑2’,4,4’, 5’,7,7’‑六氯荧光素(HEX)、5’或6’‑羧基‑4’,5’‑二氯‑2’,7’‑二甲氧基荧光素(JOE)、5‑羧基‑2’,4’,5’,7’‑四氯荧光素(ZOE)、rhodol、罗丹明、四甲基罗丹明(TAMRA)、4,7‑二氯四甲基罗丹明(DTAMRA)、罗丹明X (ROX)和德克萨斯红。可与本发明一起使用的花青染料的实例包括但不限于Cy 3、Cy 3B、Cy 3.5、Cy 5、Cy 5.5、Cy 7和Cy 7.5。可与本技术一起使用的其他荧光部分和/或染料包括但不限于能量转移染料、拼合染料和发出荧光信号的其他芳族 化合物。在一些实施方案中,荧光部分包含量子点。 [0095] 在一些实施方案中,荧光部分包含荧光蛋白(例如绿色荧光蛋白(GFP)、GFP的修饰 衍生物(例如包含S65T的GFP、增强型GFP (例如包含F64L))或本领域已知的其他荧光蛋白,比如蓝色荧光蛋白(例如EBFP、EBFP2、石青(Azurite)、mKalama1)、青色荧光蛋白(例如 ECFP、Cerulean、CyPet、mTurquoise2)和黄色荧光蛋白衍生物(例如YFP、柠檬黄(Citrine)、Venus、YPet)。实施方案规定荧光蛋白可共价或非共价地结合于一种或多种积分器和/或计数器探针。 [0096] 荧光染料非限制性地包括d‑罗丹明受体染料,包括Cy5、二氯[R110]、二氯[R6G]、二氯[TAMRA]、二氯[ROX]等;荧光素供体染料,包括荧光素、6‑FAM、5‑FAM等;吖啶,包括吖啶橙、吖啶黄、原黄素,pH 7等;芳烃,包括2‑甲基苯并 唑、对二甲氨基苯甲酸乙酯、苯酚、吡咯、苯、甲苯等;芳基次甲基型染料(Arylmethine Dyes),包括金胺O、结晶紫、结晶紫‑甘油、孔雀绿等;香豆素染料,包括7‑甲氧基香豆素‑4‑乙酸、香豆素1、香豆素30、香豆素314、香豆素343、香豆素6等;花青染料,包括1,1’‑二乙基‑2,2’‑花青碘、隐花青、吲哚羰花青(C3)染料、吲哚二羰花青(C5)染料、吲哚三羰花青(C7)染料、氧杂羰花青(C3)染料、氧杂二羰花青(C5)染料、氧杂三羰花青(C7)染料、碘化频哪氰醇、全染色剂、硫杂羰花青(C3)染料‑乙醇、硫杂羰花青(C3)染料‑正丙醇、硫杂二羰花青(C5)染料、硫杂三羰花青(C7)染料等;二吡咯甲烯染料,包括N,N’‑二氟硼基‑1,9‑二甲基‑5‑(4‑碘苯基)‑二吡咯甲烯、N,N’‑二氟硼基‑ 1,9‑二甲基‑5‑[(4‑(2‑三甲基甲硅烷基乙炔基)、N,N’‑二氟硼基‑1,9‑二甲基‑5‑苯基二吡咯甲烯等;部花青,包括4‑(二氰基亚甲基)‑2‑甲基‑6‑(对‑二甲氨基苯乙烯基)‑4H‑吡喃(DCM)‑乙腈、4‑(二氰基亚甲基)‑2‑甲基‑6‑(对‑二甲氨基苯乙烯基)‑4H‑吡喃(DCM)‑甲醇、 4‑二甲氨基‑4’‑硝基芪、部花青540等;杂类染料,包括4’,6‑二脒基‑2‑苯基吲哚(DAPI)‑二甲基亚砜、7‑苄氨基‑4‑硝基苯并‑2‑氧杂‑1,3‑二唑、丹磺酰甘氨酸、丹磺酰甘氨酸‑二氧杂环己烷、Hoechst 33258‑DMF、Hoechst 33258、荧光黄CH、吡罗昔康、硫酸奎宁、硫酸奎宁、方酸 染料III等;寡苯撑类,包括2,5‑二苯基 唑(PPO)、联苯、POPOP、对四联苯、对三联苯等; 嗪类,包括甲酚紫高氯酸盐、尼罗蓝‑甲醇、尼罗红‑乙醇、 嗪1、 嗪170等;多环芳烃类,包括9,10‑双(苯乙炔基)蒽、9,10‑二苯基蒽、蒽、萘、苝、芘等;多烯/聚炔类,包括1,2‑二苯基乙炔、1,4‑二苯基丁二烯、1,4‑二苯基丁二炔、1,6‑二苯基己三烯、β‑胡萝卜素、茋类等;氧化还原活性的发色团类,包括蒽醌、偶氮苯、苯醌、二茂铁、核黄素、三(2,2’‑联吡啶)钌(II)、四吡咯、胆红素、叶绿素a ‑乙醚、叶绿素a ‑甲醇、叶绿素b、二质子化‑四苯基卟啉、血色素、八乙基卟啉镁、八乙基卟啉镁(MgOEP)、酞菁镁(MgPc)‑PrOH、酞菁镁(MgPc)‑吡啶、四‑三甲苯基卟啉镁(MgTMP)、四苯基卟啉镁(MgTPP)、八乙基卟啉、酞菁(Pc)、卟吩、ROX、TAMRA、四叔丁基氮杂卟吩、四叔丁基萘酞菁、四(2,6‑二氯苯基)卟啉、四(邻氨基苯基)卟啉、四‑三甲苯基卟啉(TMP)、四苯基卟啉(TPP)、维生素B12、八乙基卟啉锌(ZnOEP)、酞菁锌(ZnPc)‑吡啶、四‑三甲苯基卟啉锌(ZnTMP)、四‑三甲苯基卟啉锌自由基阳离子、四苯基卟啉锌(ZnTPP)等;呫吨类,包括曙红Y、荧光素‑碱性乙醇、荧光素‑乙醇、罗丹明123、罗丹明6G、罗丹明B、孟加拉玫瑰红、磺基罗丹明101等;或其混合物或组合,或其合成衍生物。 [0097] 已知适用于该技术的特定实施方案的几类荧光染料和特定化合物:呫吨衍生物, 比如荧光素、罗丹明、俄勒冈绿、曙红和德克萨斯红;花青衍生物,比如花青、吲哚羰花青、氧杂羰花青、硫杂羰花青和部花青;萘衍生物(丹磺酰和prodan衍生物);香豆素衍生物; 二唑衍生物,比如吡啶基 唑、硝基苯并 二唑和苯并 二唑;芘衍生物,比如级联蓝; 嗪 衍生物,比如尼罗红、尼罗蓝、甲酚紫和 嗪170;吖啶衍生物,比如原黄素、吖啶橙和吖啶黄;芳基次甲基型衍生物,比如金胺、结晶紫、孔雀绿;四吡咯衍生物,比如卟吩、酞菁、胆红素。在一些实施方案中,荧光部分为染料,所述染料为:呫吨、荧光素、罗丹明、BODIPY、花青、香豆素、芘、酞菁、藻胆蛋白、ALEXA FLUOR® 350、ALEXA FLUOR® 405、ALEXA FLUOR®  430、ALEXA FLUOR® 488、ALEXA FLUOR® 514、ALEXA FLUOR® 532、ALEXA FLUOR® 546、 ALEXA FLUOR® 555、ALEXA FLUOR® 568、ALEXA FLUOR® 568、ALEXA FLUOR® 594、ALEXA  FLUOR® 610、ALEXA FLUOR® 633、ALEXA FLUOR® 647、ALEXA FLUOR® 660、ALEXA FLUOR ® 680、ALEXA FLUOR® 700、ALEXA FLUOR® 750或方酸染料。在一些实施方案中,该标签 为如在例如Haugland (2005年9月) MOLECULAR PROBES HANDBOOK OF FLUORESCENT  PROBES AND RESEARCH CHEMICALS (第10版)中所述的荧光可检测部分,所述文献通过参考 以其全部结合至本文中。 [0098] 在一些实施方案中,标签(例如荧光可检测部分)可自ATTO‑TEC  GmbH  (Am  Eichenhang 50, 57076 Siegen, Germany)获得,例如如在美国专利申请公开号 20110223677、20110190486、20110172420、20060179585和20030003486;和在美国专利号7, 935,822中所述,所述内容全部通过参考结合至本文中(例如ATTO 390、ATTO 425、ATTO  465、ATTO 488、ATTO 495、ATTO 514、ATTO 520、ATTO 532、ATTO Rho6G、ATTO 542、ATTO  550、ATTO 565、ATTO Rho3B、ATTO Rho11、ATTO Rho12、ATTO Thio12、ATTO Rho101、ATTO  590、ATTO 594、ATTO Rho13、ATTO 610、ATTO 620、ATTO Rho14、ATTO 633、ATTO 647、ATTO  647N, ATTO 655、ATTO Oxa12、ATTO 665、ATTO 680、ATTO 700、ATTO 725、ATTO740)。 [0099] 本领域的普通技术人员将认识到,具有在这些范围之外的发射最大值的染料也可 被使用。在一些情况下,500 nm‑700 nm之间范围内的染料具有处于可见光谱内的优势,并且可使用现有的光电倍增管进行检测。在一些实施方案中,广泛范围的可用染料允许选择 具有分布在整个检测范围内的发射波长的染料组。能够区分许多染料的检测系统为本领域 已知的。 [0100] 标签转移 该技术的实施方案包括将标签从多个计数器探针转移(例如不可逆的转移(例如 基本上不可逆的转移和/或有效地不可逆的转移))至积分器探针。该技术不限于当计数器 探针和积分器探针与分析物分子结合时提供将标签从计数器探针转移至积分器探针的组 合物、分子、接头、非共价和/或共价结合、化学反应等。该技术提供包含标签的计数器探针,所述标签与计数器探针稳定缔合直至计数器探针和积分器探针与分析物结合。在计数器探 针和积分器探针与分析物缔合后,标签被转移至积分器探针并与积分器探针稳定缔合。因 此,在一些实施方案中,该技术提供:包含标签的计数器探针;和积分器探针,其中标签对未结合的计数器探针的亲和力高于标签对包含计数器探针的组合物中任何其他分子的亲和 力,并且标签对结合于分析物的计数器探针的亲和力小于标签对结合于计数器探针所结合 的同一分析物的积分器探针的亲和力。 [0101] 在一些实施方案中,计数器探针包含共价连接的标签和含有与DNA分析物互补的 RNA核苷酸的部分,标签与结合于计数器探针所结合的同一分析物的积分器探针发生化学 反应(例如通过点击化学反应),并且RNase H酶降解包含RNA核苷酸的计数器探针部分,以 提供包含共价连接的标签和含有与DNA分析物互补的RNA核苷酸的部分的不同计数器探针 的结合,从而提供标签转移至积分器探针的二次循环。 [0102] 在一些实施方案中,积分器探针包含含有黏性末端序列的一个或多个核酸双链 体,而计数器探针包含通过黏性末端介导的链置换转移至积分器探针的核酸。 [0103] 在一些实施方案中,积分器探针包含多个标签,每个标签处于第一状态,并由结合于积分器探针所结合的同一分析物的计数器探针转化为第二状态。将多个积分器标签从第 一状态转化为第二状态提供了多个计数器探针与分析物结合的记录。 [0104] 在一些实施方案中,计数器探针包含结合标签的抗体,而积分器探针包含多个抗 体,每个抗体以比计数器探针的抗体结合标签更高的亲和力结合标签。 [0105] 在一些实施方案中,积分器探针包含催化一种或多种标签转移至积分器探针的一 种或多种酶。在一些实施方案中,计数器探针包含催化标签转移至积分器探针的一种或多 种酶。 [0106] 在一些实施方案中,计数器探针经与分析物稳定结合的单独适配器探针(例如核 酸探针、适体或抗体)间接地与分析物相互作用。在结合适配器探针后,计数器探针将标签转移至与同一分析物分子缔合的相邻积分器探针,然后与适配器探针解离。许多标签可从 经同一适配器探针依序结合同一分析物的几个计数器探针转移至同一积分器探针。 [0107] 在一些实施方案中,计数器探针结合至与反应混合物中单独的物质相(例如胶体 颗粒、脂质纳米颗粒、胶束或者液‑液乳液、凝聚层或水性两相系统的单独相)缔合的分析物导致标签转移至单独的物质相。积分器包含单独的物质相。 [0108] 检测 在一些实施方案中,该技术包括检测包含多个标签(例如至少2个标签)的积分器 探针。该技术提供目标分析物的检测,例如在存在类似分析物的情况下,并且在一些实施方案中,在存在背景噪声的情况下。该技术并不局限于可用于检测包含多个标签的积分器探 针的检测器或其他检测技术。在一些实施方案中,标签为荧光标签,并且检测包含多个标签的积分器探针包括检测指示积分器探针包含多个标签的荧光信号(例如指示存在包含多于 一个荧光标签的积分器探针的荧光信号)。在一些实施方案中,荧光信号的强度指示附接于积分器探针上的标签数量。在一些实施方案中,为在不包含或包含一个标签的积分器探针 和包含两个或更多个标签的积分器探针之间进行区分的荧光强度确定阈值(例如截止值)。 在一些实施方案中,为在指示不存在分析物(例如包含的标签数量小于阈值截止值)的积分 器探针和指示存在分析物(例如包含的标签数量至少为阈值)的积分器探针之间进行区分 的荧光强度确定阈值(例如截止值)。在一些实施方案中,使用对照进行实验来为在不存在 分析物(例如不包含标签或包含一个标签的积分器探针)和存在分析物(例如包含两个或更 多个标签的积分器探针)之间进行区分的荧光强度和/或标签数量确定阈值(例如截止值)。 [0109] 在一些实施方案中,确定指示分析物的存在与不存在的标签阈值数量。例如,在一些实施方案中,少于2个标签(例如0或1个标签)表示不存在分析物,而2个或更多个标签表 示存在分析物。在一些实施方案中,少于3个标签(例如0、1或2个标签)表示不存在分析物,而3个或更多个标签表示存在分析物。在一些实施方案中,少于4个标签(例如0、1、2或3个标签)表示不存在分析物,而4个或更多个标签表示存在分析物(参见例如实施例2和图4)。在 一些实施方案中,少于5个标签(例如0、1、2、3或4个标签)表示不存在分析物,而5个或更多个标签表示存在分析物。在一些实施方案中,少于6个标签表示不存在分析物,而6个或更多个标签表示存在分析物。在一些实施方案中,少于7个标签表示不存在分析物,而7个或更多个标签表示存在分析物。在一些实施方案中,少于8个标签表示不存在分析物,而8个或更多个标签表示存在分析物。在一些实施方案中,少于9个标签表示不存在分析物,而9个或更多个标签表示存在分析物。在一些实施方案中,少于10个标签表示不存在分析物,而10个或更多个标签表示存在分析物。在一些实施方案中,阈值设置于多于10个标签的截止值处。 [0110] 在一些实施方案中,通过对适当的空白或对照测量进行统计分析,确定检测分析 物存在的适当标签阈值数量(例如通过将阈值设置为高于对空白或对照测量检测、测量和/ 或记录的每个积分器的平均或中值标签数量2、3、4或5个标准偏差)。在一些实施方案中,确定检测分析物存在的适当标签阈值数量是通过用泊松分布、二项分布、正态分布或其他适 用的统计模型对空白或对照测量进行统计分析,以确定(例如预测)指示分析物存在的假阳 性检测事件概率低于某一容许水平(例如分析物的检测为假阳性的概率为0.01、0.001、 0.0001、0.00001或0.000001)的标签阈值数量。 [0111] 在一些实施方案中,标签改变积分器探针的质量、电荷、密度或流体动力学半径,并且检测包含多个标签的积分器探针包括检测指示积分器探针包含多个标签的积分器探 针的质量、电荷、密度或流体动力学半径的变化(例如包括使用凝胶电泳、质谱、梯度超速离心、色谱、电化学测定的测定)。在一些实施方案中,检测包含多个标签的积分器探针包括使用电泳和/或色谱方法检测迁移率的变化。参见例如图2和图3。 [0112] 在一些实施方案中,单分子检测方法被用于检测包含多个标签的积分器探针。例 如,在一些实施方案中,源于包含多个标签的积分器探针的信号可与包含零个标签或一个 标签的积分器探针和/或与包含标签的计数器探针和/或与组合物中的游离标签相区分。在 一些实施方案中,检测包含多个标签的积分器探针包括使用技术比如全内反射荧光(TIRF) 或近TIRF显微术、零模波导(ZMW)、光片显微术、受激发射损耗(STED)显微术或共焦显微术等。在一些实施方案中,积分器探针包含多个荧光标签,并且荧光发射的强度与附接于积分器探针的荧光标签数量成比例。在一些实施方案中,将来自积分器探针的荧光发射强度与 包含一个标签的积分器探针的已知荧光发射强度值进行比较。检测到荧光强度大于包含一 个标签的积分器探针的值表明积分器探针包含多个标签并且分析物存在于样品中。在一些 实施方案中,包含多个标签的积分器探针的荧光大于指示样品中存在分析物的定义的阈 值。在一些实施方案中,包含多个标签的积分器探针的荧光强度具有高于包含零个或一个 标签的积分器探针的荧光强度至少1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、 2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、 4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或5.0或更多个标准偏差或者高于指示样品中存在分析物的定义阈值的荧光强度。 [0113] 在一些实施方案中,当积分器探针暴露于激发光时,通过计数荧光强度下降的数 量(例如通过计数光漂白步骤)来推断结合于积分器探针的标签数量。在一些实施方案中, 包含多个标签的积分器探针表现出至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、 19或20个光漂白步骤,指示样品中存在分析物。在一些实施方案中,表现出比在不存在分析物的情况下于对照实验中对积分器探针观察到的更多的光漂白步骤数量的积分器探针指 示样品中存在分析物。 [0114] 在一些实施方案中,测量阳性和/或阴性对照样品(例如已知包含或不包含分析物 的对照样品)。在包括使用荧光标签的实施方案中,在阴性对照样品中检测到的荧光为“背景荧光”或“背景(荧光)强度”或“基线”。 [0115] 在一些实施方案中,通过识别数据中的模式和规律的算法来分析数据,例如使用 人工智能、模式识别、机器学习、统计推断、神经网络等。在一些实施方案中,分析包括使用频率论分析,并且在一些实施方案中,分析包括使用贝叶斯分析。在一些实施方案中,使用已知的“训练”数据(例如使用监督学习)来训练模式识别系统,并且在一些实施方案中,算法被用于发现先前未知的模式(例如无监督学习)。参见例如Duda等人(2001) Pattern  classification (第2版), Wiley, New York; Bishop (2006) Pattern Recognition  and Machine Learning, Springer。在一些实施方案中,模式识别(例如使用训练集、监督学习、无监督学习和未知样本的分析)将所鉴定的模式与分析物相关联,使得特定模式提供可用于分析物的检测、量化和鉴定的特定分析物的“指纹”。在一些实施方案中,使用统计学处理数据以确定样品中存在或不存在分析物的概率。 [0116] 样品 在一些实施方案中,样品(例如生物样品和/或生物流体)包含分析物。在一些实施 方案中,样品还包含多种其他非分析物组分,例如核酸、蛋白、脂质和代谢物。分析物和包含分析物的样品可从得自动物、植物、细菌、古生菌、真菌或任何其他生物体的任何材料(例如细胞材料(活的或死的)、细胞外材料、病毒材料、环境样品(例如宏基因组样品)和/或合成材料)中获得。用于本技术的生物样品包括病毒颗粒或其制剂。分析物和包含分析物的样品可直接从生物体,或从得自生物体的生物样品,例如从血液、尿液、脑脊液、精液、唾液、痰液、粪便、毛发、汗液、泪液、皮肤和组织中获得。示例性的样品包括但不限于全血、淋巴液、血清、血浆、颊细胞、汗液、泪液、唾液、痰液、毛发、皮肤、活检、脑脊液(CSF)、羊水、精液、阴道分泌物、浆液、滑液、心包液、腹膜液、胸膜液、漏出液、渗出液、囊性液、胆汁、尿液、胃液、肠液、粪便样品和拭子、抽吸物(例如骨髓、细针等)、洗涤液(例如口腔、鼻咽、支气管、支气管肺泡、眼、直肠、肠道、阴道、表皮等)和/或其他样本。 [0117] 任何组织或体液样本均可被用作用于该技术的分析物和包含分析物的样品的来 源,包括法医样本、存档样本、保存样本和/或长期储存的样本,例如新鲜冷冻、甲醇/乙酸固定或福尔马林固定石蜡包埋(FFPE)样本和样品。还可从培养细胞(比如原代细胞培养物或 细胞系)中分离分析物和包含分析物的样品。从中获得分析物和包含分析物的样品的细胞 或组织可被病毒或其他细胞内病原体所感染。 [0118] 核酸分子可例如通过从生物样品中提取,例如通过多种技术得到,比如由 Maniatis等人(1982) Molecular Cloning: A Laboratory Manual, Cold Spring  Harbor, N.Y. (参见例如第280‑281页)描述的那些技术。样品可包含从生物样本、cDNA文库、病毒核酸或基因组DNA中提取的RNA。样品也可为从非细胞来源分离的DNA,例如已储存于冷冻箱中的扩增/分离DNA。 [0119] 在一些实施方案中,该技术被用于原位鉴定分析物。具体地讲,该技术的实施方案提供在不从组织、细胞等中提取分析物的情况下直接在组织、细胞等中(例如在透化组织、细胞等之后)对分析物的鉴定。在与原位检测相关的技术的一些实施方案中,该技术可在体内、离体和/或体外进行应用。在一些实施方案中,样品为粗样品、最低限度处理的细胞裂解物或生物流体裂解物。在一些实施方案中,在未经核酸纯化的粗裂解物中检测分析物。 [0120] 方法 一些实施方案提供如本文所述的使用积分器探针和计数器探针鉴定分析物的方 法。例如,在一些实施方案中,方法包括获取或提供样品(例如生物样品(例如生物流体)),例如包含分析物和/或疑似包含分析物的样品。在一些实施方案中,样品从需要测试分析物的存在、不存在和/或数量的患者获得和/或由其提供。在一些实施方案中,对由患者提供 和/或从患者获得的样品测试分析物的存在、不存在和/或数量表明患者中分析物的状态 (例如存在、不存在和/或数量)。在一些实施方案中,样品接受被设计为分离或富集样品的分析物初步处理。本领域普通技术人员已知的多种技术可被用于该目的,包括但不限于离 心、免疫捕获、细胞裂解、过滤、色谱、磁珠的使用和核酸目标捕获。 [0121] 在一些实施方案中,方法包括提供积分器探针和提供计数器探针。在一些实施方 案中,方法包括将包含分析物的组合物与包含积分器探针和/或计数器探针的一种或多种 组合物混合。在一些实施方案中,方法包括将包含分析物的组合物与积分器探针和多种计 数器探针接触以提供反应混合物,并在温育温度下温育反应混合物持续温育时间。 [0122] 在一些实施方案中,提供计数器探针包括合成计数器探针。在一些实施方案中,合成计数器探针包括合成计数器探针和将标签附接(例如非共价或共价附接)于计数器探针。 在一些实施方案中,方法包括提供标签。在一些实施方案中,标签由商业来源提供,并且在一些实施方案中,标签由本文提供的方法的用户合成。在一些实施方案中,标记的计数器探针由商业来源提供。在一些实施方案中,提供积分器探针包括合成积分器探针。 [0123] 在一些实施方案中,方法包括温育包含计数器探针和积分器探针的组合物(例如 处于作为温育温度的温度和/或持续作为温育时间的时间长度)。在一些实施方案中,方法 包括在温育温度下将包含计数器探针和积分器探针的组合物温育一段时间,使得发生计数 器探针与分析物(如果存在)结合的多次循环,以产生包含多个标签的积分器探针。在一些 实施方案中,方法包括检测包含多个标签的积分器探针。在一些实施方案中,方法包括量化包含多个标签的积分器探针的数量和/或量化从计数器探针转移至一个或多个积分器探针 的标签(例如标签部分)的数量。在一些实施方案中,方法包括通过量化包含多个标签的积 分器探针的数量和/或量化从计数器探针转移至积分器探针的标签(例如标签部分)的数量 来量化样品中的分析物。在一些实施方案中,方法包括通过在已知条件下(例如已知的温育温度和/或已知的温育时间)在包含已知量和/或浓度的分析物的一种或多种组合物中量化 包含多个标签的积分器探针的数量和/或量化从计数器探针转移至积分器探针的标签(例 如标签部分)的数量来产生标准曲线。在一些实施方案中,方法包括提供阴性对照和/或提 供阳性对照。在一些实施方案中,方法包括用阴性对照和/或用阳性对照实施测定方法,例如通过提供包含阴性对照和/或阳性对照、计数器探针和积分器探针的组合物。 [0124] 在一些实施方案中,方法包括检测来自标签的信号。在一些实施方案中,方法包括提供电磁辐射源。在一些实施方案中,方法包括提供电磁辐射检测器。在一些实施方案中,方法包括辐照样品(例如使用电磁辐射源)。在一些实施方案中,方法包括使用电磁辐射检 测器量化例如由标签发射的电磁辐射的强度。在一些实施方案中,方法包括使用由标签(例如由一个或多个标记的积分器探针)产生的信号强度来计算样品中分析物的浓度或量。 [0125] 在一些实施方案中,方法包括提供环境条件(例如温度、溶液条件(例如pH、缓冲、盐、化学活性))、催化剂和/或反应性化学成分,使得当计数器探针和积分器探针结合于同一分析物时,标签从计数器探针转移至积分器探针。此外,在一些实施方案中,方法包括提供环境条件(例如温度、溶液条件(例如pH、缓冲、盐、化学活性))、催化剂和/或反应性化学成分,使得包含标签的计数器探针结合于积分器探针所结合的分析物,标签从计数器探针 转移至积分器探针,和计数器探针与分析物解离。在一些实施方案中,方法包括提供促进标签转移之后计数器探针与分析物解离的酶活性。 [0126] 试剂盒 在一些实施方案中,该技术涉及试剂盒。例如,在一些实施方案中,试剂盒包括包 含标签的计数器探针和积分器探针,例如在一种或多种组合物中(例如包含含有标签的计 数器探针和积分器探针的组合物;包含含有标签的计数器探针的第一组合物以及包含积分 器探针的第二组合物)。在一些实施方案中,试剂盒包括阳性对照(例如包含已知浓度和/或量的分析物的组合物)。在一些实施方案中,试剂盒包括阴性对照(例如不包含分析物或包 含不可检测量和/或浓度的分析物的组合物)。在一些实施方案中,试剂盒包括用于制备包 含分析物的组合物的缓冲溶液。在一些实施方案中,试剂盒包括缓冲溶液和用于制备来自 患者的样品的设备。在一些实施方案中,试剂盒包括用于容纳来自受试者的样品并在其中 进行如本文所述的测定的容器。 [0127] 系统 该技术的实施方案涉及用于检测分析物的系统。例如,在一些实施方案中,该技术 提供用于量化一种或多种目标分析物的系统,其中该系统包括如本文所述的积分器探针和 包含标签的计数器探针。此外,一些系统实施方案包括在将积分器探针和计数器探针与包 含分析物(如果存在)的样品一起温育之后记录来自积分器探针的信号的检测组件。例如, 在一些实施方案中,检测组件记录从积分器探针产生的信号,例如在积分器探针和计数器 探针与分析物的相互作用之后。在一些实施方案中,检测组件记录由包含多个标签的积分 器探针提供的信号强度。 [0128] 系统实施方案包括分析过程(例如体现在例如编码于软件中的指示微处理器执行 分析过程的一组指令中),以处理信号(例如来自包含多个标签的积分器探针)和将样品鉴 定为包含分析物的样品。在一些实施方案中,分析过程使用由包含多个标签的积分器探针 产生的信号强度作为输入数据。在一些实施方案中,系统包括分析物。系统的实施方案并不局限于所检测的分析物。例如,在一些实施方案中,分析物为多肽,例如蛋白或肽。在一些实施方案中,目标分析物为核酸。在一些实施方案中,目标分析物为如本文所述的小分子或其他分子或实体。 [0129] 该技术的一些系统实施方案包括用于检测和量化分析物的组件。一些系统实施方 案包括检测组件,其为包括激发积分器探针标签的照明构造的荧光显微镜。一些实施方案 包括荧光检测器,例如包括增强型电荷耦合器(ICCD)、电子倍增电荷耦合器(EM‑CCD)、互补金属氧化物半导体(CMOS)、光电倍增管(PMT)、雪崩光电二极管(APD)的检测器和/或能够检测来自单个发色团荧光发射的另一检测器。一些特定实施方案包括被配置用于无透镜成像 的组件,例如无透镜显微镜,例如用于直接基于检测器(例如CMOS)进行成像而无需使用透 镜的检测和/或成像组件。 [0130] 一些实施方案包括计算机和编码指令的软件,其用于计算机来执行,例如以控制 数据获取和/或用于处理数据的分析过程。 [0131] 一些实施方案包括光学器件,比如透镜、反射镜、二向色镜、滤光片等,例如以选择性检测特定波长范围或多个波长范围内的荧光。 [0132] 例如,在一些实施方案中,基于计算机的分析软件被用于将通过检测测定产生的 原始数据(例如一种或多种分析物的存在、不存在或量)转换成对临床医师具有预测价值的 数据。临床医师可使用任何合适的方法访问预测数据。 [0133] 一些系统实施方案包括可在其上实施本技术实施方案的计算机系统。在各种实施 方案中,计算机系统包括用于传送信息的总线或其他通信机制以及与总线耦合用于处理信 息的处理器。在各种实施方案中,计算机系统包括与总线耦合的存储器(其可为随机访问存储器(RAM)或其他动态存储设备)以及由处理器执行的指令。存储器也可被用于在执行待由 处理器执行的指令期间存储临时变量或其他中间信息。在各种实施方案中,计算机系统可 进一步包括只读存储器(ROM)或与总线耦合的其他静态存储设备,用于存储用于处理器的 静态信息和指令。可提供存储设备,比如磁盘或光盘,并将其耦合于总线用于存储信息和指令。 [0134] 在各种实施方案中,计算机系统经总线耦合于显示器,比如阴极射线管(CRT)或液 晶显示器(LCD),用于向计算机用户显示信息。包括字母数字键和其他键在内的输入设备可耦合于总线,用于向处理器传送信息和命令选择。另一种类型的用户输入设备为光标控件,比如鼠标、轨迹球或光标方向键,用于向处理器传送方向信息和命令选择以及用于控制显 示器上的光标移动。该输入设备一般地在两个轴(第一轴(例如x)和第二轴(例如y))上具有 两个自由度,使得设备能够指定平面中的位置。 [0135] 计算机系统可执行本技术的实施方案。与本技术的某些实施方式一致,结果可通 过计算机系统响应于处理器执行存储器中含有的一个或多个指令的一条或多条序列来提 供。此类指令可从另一计算机可读介质比如存储设备读取到存储器中。执行存储器中含有 的指令序列可引起处理器执行本文所述的方法。或者,硬连线电路可代替软件指令或与软 件指令组合使用,以实施本教导。因此,本技术的实施不局限于硬件电路和软件的任何特定组合。 [0136] 如本文所使用的术语“计算机可读介质”是指参与向处理器提供指令以供执行的 任何介质。此类介质可采取许多形式,包括但不限于非易失性介质、易失性介质和传输介 质。非易失性介质的实例可包括但不限于光盘或磁盘,比如存储设备。易失性介质的实例可包括但不限于动态存储器。传输介质的实例可包括但不限于同轴电缆、铜线和光纤,包括构成总线的导线。 [0137] 计算机可读介质的常见形式包括例如软盘、软磁盘、硬盘、闪存介质、磁带或任何其他磁介质、CD‑ROM、任何其他光学介质、穿孔卡片、纸带、任何其他具有穿孔图案的物理介质、RAM、PROM和EPROM、FLASH‑EPROM、任何其他存储芯片或盒式磁带,或者计算机可从中读取的任何其他有形介质。 [0138] 在将一个或多个指令的一条或多条序列运送至处理器以供执行时,可涉及各种形 式的计算机可读介质。例如,指令最初可承载于远程计算机的磁盘上。远程计算机可将指令加载到其动态存储器中,并经网络连接(例如LAN、WAN、互联网、电话线)发送指令。本地计算机系统可接收数据并将其传输至总线。总线可将数据运送至存储器,处理器从其中检索并 执行指令。由存储器接收的指令可任选地在处理器执行之前或之后被存储于存储设备上。 [0139] 根据各种实施方案,被配置为由处理器执行以实施方法的指令被存储于计算机可 读介质上。计算机可读介质可为存储数字信息的设备。例如,计算机可读介质包括如本领域已知的用于存储软件的小型光盘只读储存器(CD‑ROM)。计算机可读介质由适合于执行被配置为待执行的指令的处理器进行访问。 [0140] 根据这种计算机系统,本文提供的技术的一些实施方案进一步包括用于收集、存 储和/或分析数据(例如分析物的存在、不存在、浓度)的功能。例如,一些实施方案考虑包括处理器、存储器和/或数据库的系统,用于例如存储和执行指令、分析标签信号、信号强度和/或检测数据、使用数据进行计算、转换数据以及存储数据。在一些实施方案中,算法将统计模型应用于数据。 [0141] 许多诊断涉及确定一种或多种核酸的存在或其核苷酸序列。 [0142] 在一些实施方案中,包含表示一种或多种分析物的存在、不存在、浓度、量或序列特性的变量的方程式产生可用于作出诊断或评价分析物的存在或质量的值。因此,在一些 实施方案中,该值由设备例如通过与结果相关的指示物(例如LED、显示器上的图标、声音 等)呈现。在一些实施方案中,设备存储该值、传输该值或将该值用于另外的计算。在一些实施方案中,方程式包含表示一种或多种分析物的存在、不存在、浓度、量或特性的变量。 [0143] 因此,在一些实施方案中,本技术提供进一步的益处,即不太可能接受过分析测定培训的临床医师无需理解原始数据。数据以其最有用的形式直接呈现给临床医师。在一些 实施方案中,临床医师然后能够利用该信息来优化受试者的护理。本技术考虑能够从进行 测定的实验室、信息提供者、医务人员和/或受试者接收、处理并传输信息给他们的任何方法。例如,在本技术的一些实施方案中,从受试者获得样品并将其提交给位于世界任何地区(例如与其中受试者所居住或其中信息最终使用的国家不同的国家)的分析服务(例如医疗 设施处的临床实验室、基因组分析企业等),以产生原始数据。在样品包括组织或其他生物样品的情况下,受试者可访问医疗中心以获取样品并发送至分析中心,或者受试者可自己 收集样品并直接将其发送至分析中心。在样品包含先前确定的生物信息的情况下,该信息 可由受试者直接发送至分析服务(例如含有该信息的信息卡可通过计算机进行扫描,并使 用电子通信系统将数据传输至分析中心的计算机)。一旦被分析服务接收到,样品就会被处理,并且特定于受试者所期望的诊断或预后信息的概况得以产生。然后以适合于由治疗临 床医师解释的格式准备概况数据。例如,所准备的格式可能表示受试者的诊断或风险评估,以及对特定治疗方案的建议,而不是提供原始数据。数据可通过任何合适的方法显示给临 床医师。例如,在一些实施方案中,分析服务生成可为临床医师打印(例如在护理点)或在计算机监视器上显示给临床医师的报告。在一些实施方案中,首先在护理点或在区域设施处 分析信息。然后将原始数据发送至中央处理设施以进行进一步分析和/或将原始数据转化 为对临床医师或患者有用的信息。中央处理设施提供保密性(所有数据均存储于具有统一 安全协议的中央设施中)、速度和数据分析一致性的优势。然后中央处理设施可在受试者治疗后控制数据的命运。例如,使用电子通信系统,中央设施可向临床医师、受试者或研究人员提供数据。在一些实施方案中,受试者可使用电子通信系统访问数据。受试者可基于结果选择进一步的干预或咨询。在一些实施方案中,数据被用于研究用途。例如,数据可被用于进一步优化作为与疾病相关的特定病症的有用指标的标志物的包含或消除。 [0144] 用途 该技术其用途不受限制。例如,该技术可用于检测分析物的存在和/或量化分析物 的研究。在一些实施方案中,该技术可用于临床医学,例如用于检测指示患者患有疾病、痼疾和/或小恙的分析物。 [0145] 各种实施方案涉及广泛范围的分析物的检测。例如,在一些实施方案中,该技术可用于检测核酸(例如DNA或RNA)。在一些实施方案中,该技术可用于检测包含特定目标序列 的核酸。在一些实施方案中,该技术可用于检测包含特定突变(例如单核苷酸多态性、插入、缺失、错义突变、无义突变、基因重排、基因融合等)的核酸。在一些实施方案中,该技术可用于检测多肽(例如蛋白、肽)。在一些实施方案中,该技术可用于检测由包含突变的核酸编码的多肽(例如包含取代的多肽、截短的多肽、突变体或变体多肽)。 [0146] 在一些实施方案中,该技术可用于检测多肽的翻译后修饰(例如磷酸化、甲基化、 乙酰化、糖基化(例如O‑连接的糖基化、N‑连接的糖基化)、泛素化、官能团附接(例如肉豆蔻酰化、棕榈酰化、异戊二烯化(isoprenylation)、异戊二烯化(prenylation)、法尼基化、香叶基化、香叶基香叶基化、糖基磷脂酰肌醇化、糖基磷脂酰肌醇(GPI)锚定形成)、羟基化、生物素化、聚乙二醇化、氧化、SUMO化、二硫桥形成、二硫桥切割、蛋白水解切割、酰胺化、硫酸盐化、吡咯烷酮羧酸形成)。在一些实施方案中,该技术可用于检测这些特征的丧失,例如去磷酸化、去甲基化、去乙酰化、去糖基化、去酰胺化、去羟基化、去泛素化等。在一些实施方案中,该技术可用于检测对DNA或RNA的表观遗传修饰(例如甲基化(例如CpG位点的甲基化)、 羟甲基化)。在一些实施方案中,该技术可用于检测这些特征的丧失,例如DNA或RNA的去甲基化等。在一些实施方案中,该技术可用于检测染色质结构、核小体结构、组蛋白修饰等的改变,以及检测对核酸的损伤。在一些实施方案中,该技术可用于检测脂质、碳水化合物、代谢物和/或小分子。 [0147] 在一些实施方案中,该技术可用作分子诊断测定,例如测定具有小样本体积的样 品(例如一滴血,例如用于邮寄服务)。在一些实施方案中,该技术使用对丰度非常低的分析物生物标志物的灵敏检测来提供癌症或感染性疾病的早期检测。在一些实施方案中,该技 术可用于分子诊断,以测定蛋白生物标志物的表观遗传修饰(例如翻译后修饰)。 [0148] 在一些实施方案中,该技术可用于表征多分子复合物(例如表征多分子复合物的 一种或多种组分),例如多蛋白复合物、核酸/蛋白复合物、分子机器、细胞器(例如,例如血浆中的无细胞线粒体)、细胞、病毒颗粒、生物体、组织或者任何适合于通过本文所述技术进行分析的大分子结构或实体。例如,在一些实施方案中,多分子复合物被分离,且该技术可用于表征、鉴定、量化和/或检测与多分子复合物相关的一种或多种分子(分析物)。在一些实施方案中,细胞外囊泡并被分离,且该技术可用于表征、鉴定、量化和/或检测与囊泡相关的一种或多种分子(分析物)。在一些实施方案中,该技术可用于表征、鉴定、量化和/或检测蛋白(例如表面蛋白)和/或存在于囊泡内的分析物,例如蛋白、核酸或本文所述的其他分析物。在一些实施方案中,囊泡在分析之前被固定并透化。 实施例 [0149] 实施例1 在本文所述技术的实施方案的开发期间,使用本文所述的积分器技术的实施方案 进行实验以检测核酸中的点突变。在实验中,包含一个或多个(例如1、2或3个)反式环辛烯(TCO)部分的积分器探针和包含甲基四嗪(mTz)的计数器探针被用于检测编码表皮生长因 子受体(EGFR)的核酸中胞嘧啶到胸腺嘧啶的点突变。该突变在EGFR蛋白的氨基酸序列中的 790位处产生甲硫氨酸取代苏氨酸(EGFR T790M)。 [0150] 在示例性的实验中,EGFR T790M核酸(“MUT”)长度为41 bp。计数器探针包含与含有单核苷酸突变的MUT部分互补的10个连续核苷酸。计数器探针10‑nt互补序列的6个核苷 酸为RNA核苷酸,并提供了当计数器探针与MUT核酸结合时被RNase H靶向用于降解的区域。 提供了野生型竞争性探针,其包含与野生型(WT) EGFR序列互补的10个DNA核苷酸。竞争性 探针与计数器探针竞争与野生型序列的结合,并抑制可由计数器探针与野生型核酸的相互 作用产生的非特异性信号。将分析物(MUT核酸)、积分器探针、计数器探针和竞争性探针与RNase H一起在室温下于NEBuffer 3.1 (New England Biolabs)中温育1‑30分钟,之后用 约2 mM的甲基四嗪淬灭点击反应。反应在变性聚丙烯酰胺凝胶上运行,并且SYBR金染色被 用于可视化凝胶内的核酸(图3)。 [0151] 如上所述,计数器探针被设计为与编码EGFR T790M的核酸形成10个碱基对,而竞 争性探针被设计为与野生型核苷酸序列形成10个碱基对以抑制计数器探针与野生型核酸 的结合。因此,该实验被设计为使得仅当存在突变体序列EGFR T790M而不是存在野生型序 列时,积分器TCO部分才与计数器探针的多个拷贝发生反应(例如通过点击化学反应)。实验期间收集的数据与这一预期一致。如图3所示,在积分器探针、计数器探针、野生型竞争性探针和RNase H与突变体核酸(MUT)一起温育后,在变性聚丙烯酰胺凝胶电泳实验中出现低迁 移率条带。这些低迁移率条带表明存在与计数器探针的2‑3个拷贝缀合的积分器探针。相比之下,没有证据表明在仅存在野生型序列的情况下存在多重修饰的积分器探针(图3),这证明了本文所述的技术区分分析物(例如包含仅相差单个核苷酸的序列的核酸)的能力。 [0152] 实施例2 在本文提供的技术的实施方案开发期间进行了实验,其中该技术被用于使用单个 积分器分子和单分子全内反射荧光(TIRF)显微术检测编码EGFR T790M突变的分析物DNA序 列。样品包含目标分析物,其为含有编码EGFR T790M突变的核苷酸序列的DNA (图4,下),或缺少目标分析物(阴性对照;图4,上)。在将阴性对照与对编码EGFR突变的序列具有特异性的积分器探针、计数器探针和RNase H一起温育之后,积分器探针一般地仅包含0、1或2个荧光标签,并且没有观察到包含多于3个荧光标签(图4,上)。相比之下,在将包含目标分析物的样品与积分器探针、计数器探针和RNase H一起温育之后,积分器探针的重要子集包含4、 5或6个标签,表明在混合物中存在目标序列(图4,下)。温育之后与每个积分器探针缔合的标签数量可通过当样品暴露于激发光时对每个表面结合的积分器探针观察到的荧光下降 数(例如对应于光漂白步骤)来进行推断。在使用于这些实验中的特定系统中,积分器探针 被配置为与多达6个包含DNA序列的标签结合,并且该标签通过荧光标记的DNA探针与标签 的序列特异性杂交来进行检测。此外,这些数据表明,本文提供的技术的实施方案检测在温育期期间与单个分析物分子结合的单个积分器分子(例如使用TIRF显微术)。如图4所示,多重标记的积分器探针在显微镜图像中显示为较亮的斑点,并且可通过计数每个积分器分子 的光漂白步骤数来检测。 [0153] 以上说明书中提及的所有出版物和专利均通过参考以其全部结合至本文中,用于 所有目的。所描述的该技术的组合物、方法和用途的各种修改和变化对于本领域的技术人 员将为显而易见的,而不背离所描述的技术的范围和精神。尽管已经结合具体的示例性实 施方案描述了该技术,但是应当理解,如所要求保护的本发明不应过度局限于这种具体的 实施方案。实际上,对于本领域技术人员显而易见的用于实施本发明的所述模式的各种修 改预期处于以下权利要求的范围内。

相关技术
物检测相关技术
A·约翰逊-布克发明人的其他相关专利技术